Когда и кем был создан телевизор. Кто изобрел телевидение и в каком году? "Эволюция вещей": История телевизора

Говорить о том, что телевизор изобрёл, какой-то один человек, наверное, не совсем верно. В это дело вложен ум, знания и опыт десятков учёных и инженеров со всего мира. Это и Топов, Тесла, Маркони и др. инженеры и исследователи, которые изобрели и отработали применение радиоволн на связи. Нельзя не отметить разработки американца Сойера и француза Мориса, разработавших основополагающий принцип телевидения – передача картинки на расстоянии.

Но на рубеже XIX–XX веков, просто не существовало технологий и оборудования, которые можно было использовать для реализации этих идей на практике.
В те давние времёна можно было использовать только механические средства и первенство в решении этого вопроса принадлежит Паулю Нипкову, инженеру из Германии. Он предложил внимание публике, то, что мы называем – электромеханическим телевизором. Он разработал устройство, которое преобразовывало картинку в набор электрических сигналов. Кстати, они серийно производились до середины тридцатых годов прошлого века.

Следующий шаг внёс его земляк Браун , он получил патент на стеклянную трубку, которая послужила прообразом электронно-лучевой трубки. М. Дикман, ученик Брауна использовал трубку в практических целях, и показал обществу устройство с довольно небольшим экраном. Промежуточную точку, поставил британец Брэд, показавший первый в мире телеприемник, который содержал все привычные компоненты, но работавший без звука.
Первые трансляции электромеханического телевидения проводились в 20 – годы XX века.

Как выглядел первый телевизор?

Для показа передач использовался первый телеприемник, который представлял из себя деревянный ящик . В переднюю панель была встроена лупа, которая позволяла рассмотреть передаваемую картинку . В количество строк в картинке содержалось от 30 до 120 срок , разумеется, с точки зрения нашего времени говорить, о каком-то качестве передачи сигнала, невозможно.

Немецкий изобретатель Пауль Нипков изобрёл диск, на котором были нанесены отверстия. Они располагались по спирали. При его вращении появлялась возможность построчного сканирования изображения, и преобразовывать их в сигналы, которые транслировались в приёмник.

Кто создал первый телеприемник в Советском Союзе?

Сигнальный советский аппарат был спроектирован в тогдашнем Ленинграде, ныне Санкт-Петербург, на предприятии, называвшееся «Коминтерн». В основе его действия лежал всё тот же диск Нипкова. По сути, это была приставка, не оснащённая собственным радиоприёмным прибором, приставка требовала подключения к обыкновенному радиоприёмнику. Для приёма звука требовалось использование ещё одного радиоприёмника.

Первый советский телеприемник оснащали экранчиком с габаритами 3*4 см. Для того, что бы можно было рассмотреть происходившее на нём, в комплект телевизора входила мощная лупа. В тридцатые годы ХХ века было выпущено 3 тыс. таких аппарата. Кстати, интересный факт, в то же время получило широкое распространение самодельное проектирование и изготовление телевизионных приёмников, которые позволяли принимать не только отечественные трансляции, но и зарубежные.

Инженерная мысль не стоит на месте и опыты по трансляции цветового решения предпринимались ещё в то время пока шли разработки механического телевидения. Первые изобретения, помогавшие решить эту проблему. В частности, были запатентована технология разложения сигнала с помощью перемещающейся призмы, её автор Ян Щепаник. Немалый вклад внёс и Ованес Адамян, который занимался вопросами создания двухцветного телевидения.

Следует напомнить, что эти работы проводились в самом конце XIX века. В то же время, российский исследователь Полумордвинов оформил патент трансляции цвета при содействии механического сканера. Но не смотря на активность исследователей реально действующих образцов создано не было до конца тридцатых годов. Первая цветная передача состоялась в Глазго.

Её провёл основатель механического телевидения Бейрд. В основе этой трансляции был использован метод в поочерёдной трансляции трёх основных цветов. Для передачи был использован диск Нипкова, с тремя рядами спиральных отверстий, которые были закрыты светофильтрами красного, зелёного и синего цветов.
На приёмнике был установлен прибор, который синтезировал изображение с использованием таких же дисков. Пробный показ цветного телевидения был проведён в 1938 г. Надо понимать то, что такая телевизионная система отличалась несовершенством и не получила массового развития.

История и эволюция телевизоров

Несмотря на все старания учёных и инженеров, телевидение не получило массового распространения. Это было обусловлено в первую очередь тем, что аппаратура отличалась сложностью в эксплуатации и высокой стоимостью.

Массовое распространение телевидение получило после изобретения кинескопа. Это изобретение принадлежит А. Зворыкину, который иммигрировал в США из России, после Октябрьского переворота. В 1933 году, он изобрёл электронно-лучевую трубку, он её назвал ионоскоп. Мы её называем киноскоп, он и стал основой современного электронного телевидения.

Во время Второй мировой войны было не до телевидения, но в США, некоторые компании было освоено серийное изготовление приёмников, одновременно с этим шло и развитие телевизионной сети. В массовом порядке возводились антенны, телестанции. О скорости развития телевидения в США можно судить по двум цифрам. В 1946 году из ста семей, проживавших в США в пяти уже были телеприемники, но уже 1962 году, телевизионные приёмники были установлены в 90% семей.

В Европе и СССР, которые были практически разрушены Второй мировой войной, развитие телевидения шло значительно медленнее.

1950-1960 компании производители освоили выпуск моделей с экранами размером 7-10 дюймов . В те годы были определены основы трансляции цветного сигнала. В США освоено производство цветных изделий. Их стали укомплектовывать пультами дистанционного управления, но правда в те времена, он был связан с телевизором с помощью кабеля. Выпуск этих устройств освоили и другие компании, расположенные по всем земному шару. Даже практически полностью уничтоженная войной Япония произвела свой аппарат.

1960–1970 приёмники телевизионных сигналов совершенствовались. Изначально они производились на электролампах, то появление полупроводниковых приборов, привело к тому, что телеприемники стали производить с использования полупроводниковых приборов. Размеры мониторов выросли до 25 .

1970–1980 в этот промежуток времени был свёрнут выпуск изделий с чёрно-белой картинкой, интересы компаний изготовителей, были направлены и на технологическую часть, но и на внешний вид устройства.

1980–1990 особо телеприёмники не изменялись, разработчики ставили эксперименты с внешним видом, изготавливали носимые приёмники теле сигнала. С технологической стороны происходил переход от полупроводниковых элементов к микросборкам и микросхемам. Корпуса телеприёмников изготавливают из полимерных материалов.

1990-2000 – снижается перечень изготовителей приёмников телевизионного сигнала, на это влияет уменьшение спроса со стороны покупателей и наполнение рынка бытовой техники — телеприёмниками.
Их корпуса стали изготавливать из пластика, это привело к существенному снижению веса изделия
Пользователь получил возможность полноценного управления телеприёмников с использованием пультов, которые работали на принципах ИК-излучения.

2000–2010 Развитие технологий в начале XXI века привело к появлению плоских мониторов, которые изготавливают по плазменной технологии. Появление этих технологий позволило организовать изготовление плоских ЖК телеприёмников. К концу этого отрезка времени прекращено изготовление телеприёмники с кинескопами (CRT). Были ключевыми изготовителями производятся только LCD или плазменные мониторы.

2010–2015 свёрнуто изготовление плазменных телеприёмников, выпускаются только LCD телевизоры, подсветка экрана осуществляется диодами. Телеприёмники трансформировалось в компьютерную технику, обладают возможностью использования ресурсов интернета. Они могут стать частью домашней ЛВС. Освоен выпуск, не требующих наружного подсвечивания OLED телеприёмники и на квантовых точках. Если в 2010 в основном изготавливались телеприёмники с HD и Full HD-мониторами, то в 2015 больше 50% телеприемников обладают разрешением UHD. Ведущие компании приступили к производству телеприемников с выгнутыми мониторами размерами порядка 100“.

В эти же годы были разработаны и запущены в серийное производство 3D телевизоры . Оно позволяло показывать зрителю объемные изображение по примеру 3D кинотеатров. В наши дни, многие компании продолжают проводить исследовательские работы по совершенствованию этой технологии, причем без использования, какого-либо дополнительного оборудования, например без стереоочков.

На практике применяют в технологии, позволяющих обеспечить 3D картинки на мониторах телеприёмников активная и пассивная. Первая разделяет картинку на две, причём совершенно разные. Для просмотра изображения потребуется применение специальных очков. Разложение изображения проводится с использованием поляризации. Каждая строка имеет свою частоту, которая отфильтровывается, используемыми очками. То есть, каждый видит свою картинку, что в результате приводит к образованию трёхмерного изображения.

Активная технология подразумевает наличие ИК-датчика, подающего сигнал на очки, которые имеют такой же датчик. На очки подают всё 1080 строк картинки. Следуя сигналам, преступаемым с телеприёмника, микрокомпьютер закрывает/открывает линзы. Поэтому технология и называется активной. Скорость открывания закрывания настолько высока, что глаз не успевает её заменить. Так как, каждый глаз получает свою картинку, мозг уже создаёт 3D картинку.

По ходу развития телевизионной техники, стало понятно то, что среди причин, которые накладывали определённые ограничения на качество картинки на экране телевизора необходимо назвать слабую защищённость ТВ – сигнала.

Повысить его качество можно только при переходе с аналогов сигнала на цифровой. Совершенствование телеприёмников направлено на использование методов управления сигналами и контроля над их работой.
Бо́льшая часть государств с развитой экономикой уже давно перешла на цифровые сигналы. Теперь этот процесс затронул и нашу страну. Переход на цифру определён решением правительства и следует отметить, что во многих регионах страны уже оно введено.

В воскресенье 13 октября 2019 года сборная России по футболу в ходе прохождения отборочного турнира ЕВРО-2020 во второй раз встретится со сборной командой Кипра.

Напомним, в домашней встрече Россия - Кипр, которая состоялась 11 июня 2019 года в Нижнем Новгороде (РФ), наша команда одержала победу с минимальным счетом - 1:0.

Ну а текущий матч пройдет на территории соперника - в Никосии, столице Республики Кипр . Площадка проведения - стадион GSP вместимостью около 23 тыс. человек.

Никосия является крупнейшим городом на острове, расположена в его центре, на берегу реки Педиос.

Во сколько начнется игра Кипр - Россия 13 октября 2019 г.:

Время начала матча по местному "кипрскому" времени - 19:00.

Поскольку Кипр находится в том же часовом поясе, что и Москва (UTC +3), то начало встречи по московскому времени такое же - 19:00 .

Кипр - Россия - на каком канале смотреть прямую трансляцию:

В прямом эфире встречу покажет "Первый" канал . Начало включения из Никосии - 18:45 мск.

Прогноз на игру Кипр - Россия 13.10.2019 г.:

Фаворитом предстоящей встречи является сборная России . Наша команда одержала победу в первом матче, пусть даже и с минимальным счетом, и явно превосходит в мастерстве киприотов. В данный момент в российской сборной подобрался сильный состав и "правильный" тренер, который может находить подход к своим игрокам.

Несмотря на более низкий уровень, команда Кипра считается крепкой командой, способной при желании (и везении) создать российской сборной серьезные проблемы. Достаточно хорошую игру в этом отборе киприоты показали против сборной Шотландии, дважды обыграли Сан-Марино и провели ничейный домашний матч с Казахстаном.

Для нашей команды это не та игра, где всё стоит на кону. Поэтому есть риск, что наши футболисты будут чувствовать себя раскованно. Ну а поскольку киприоты очень сильно играют дома, команде Станислав Черчесова надо серьезно подойти к данной встрече, если наша сборная рассчитывает на победу.

В течение нескольких десятилетий телевизоры — будь то черно-белые или цветные, ламповые или транзисторные, — использовали катодно-лучевую трубку — кинескоп. А если габариты телевизора нужно было уменьшить, то одновременно уменьшался и размер экрана. До тех пор, пока вместо кинескопов не стали применять плазменные и жидкокристаллические панели, которые позволили сделать телевизоры тонкими и плоскими.

Появление таких телевизоров — больших и плоских — предсказывали некоторые писатели-футуристы. Даже Николай Носов в книге 1958 года «Незнайка в Солнечном городе» писал:

«На другой день Клёпка и Кубик заехали за ними пораньше, и все вместе отправились на фабрику телевизоров и радиоприемников. Самое главное, что они здесь увидели, было изготовление больших плоских настенных широкоэкранных телевизоров».

Как развивался телевизор и кто приложил руку к созданию «убийцы кинематографа»? В новом цикле статей « » сайт вспоминает яркую историю устройств, передающих движущуюся картинку.

Читайте также предыдущие материалы цикла:

Плазма для огромных и дорогих телевизоров

Принципиальную возможность создания плазменных телевизоров описал венгерский инженер Калман Тиханьи еще в 1936 году. В плазме — ионизованном газе — под действием электрических разрядов возникают ультрафиолетовые лучи, которые заставляют светиться люминофор экрана. Но понадобилось почти сорок лет, чтобы первые плазменные панели пошли в производство.

Панели были небольшие, стоили дорого (2500 долларов за матрицу разрешением 512×512 пикселей) и показывали информацию оранжевым цветом. В семидесятых их уже устанавливали в компьютеры. В 1983-м компания IBM представила плазменную панель большого размера — 48 сантиметров по диагонали, тоже оранжево-монохромную. Но плазменные панели в компьютерах проиграли конкуренцию LCD-дисплеям.

Компьютер Plato V с монохромным плазменным экраном. Фото: Википедия.

Спустя еще десять лет у «плазмы» наступает второе рождение: в 1992 году японская компания Fujitsu представляет первую цветную плазменную панель диагональю 21 дюйм (53 см).

К гонке за «плазму» подключается Panasonic. Поначалу эта гонка была совместной, японо-американской: Fujitsu сотрудничала с Иллинойсским университетом в Урбане-Шампейне, а Panasonic — с американской фирмой Plasmaco.

В 1995 году Fujitsu, а два года спустя Philips представляют плазменные телевизоры диагональю 42 дюйма (107 см). В США телевизоры поступают в продажу по цене в 14 999 долларов вместе с установкой.

Пожалуй, впервые с далеких пятидесятых годов телевизор должен устанавливать мастер. И, пожалуй, впервые в быту телевизор надо крепить на стену. До этого из электроники на стену вешали разве что колонки, светомузыку да некоторые модели проигрывателей пластинок. Впрочем, в середине двухтысячных телевизоры станут в несколько раз тоньше и на рынок выйдут настольные модели.


Фото с сайта HighlandTitles.com

Первые плоские телевизоры в Беларуси

В конце девяностых — начале «нулевых» плазменные телевизоры появляются в России и Беларуси. Они немного подешевели, и для описания такой техники кое-где используют формулу «восемь на восемь»: восемь сантиметров толщины и восемь тысяч долларов цены.

Любопытно, что в пересчете на квадратный сантиметр площади плазменные панели оказывались дешевле жидкокристаллических, которые к тому времени начали набирать ход. Но по экономическим соображениям делать «плазму» малого размера невыгодно, и постепенно начинается гонка диагоналей, которая длилась все «нулевые».

Смерть «плазмы»

Плазменные панели выпускают два десятка производителей по всему миру, в «диагональной войне» все новые завоевания: 71, 76, 80, 103, 145, 150 дюймов… В итоге побеждает Panasonic: в 2010-м на выставке Consumer Electronics Show в Лас-Вегасе фирма представляет модель TH-152UX1. Почти все ее показатели умопомрачительны: диагональ — 152 дюйма (386 см), масса — 580 кг, цена — 500 тысяч долларов. Панель выдает разрешение 4096×2160 пикселей и умеет показывать 3D-контент.

Рекордная модель является одновременно и лебединой песней технологии: несмотря на радужные прогнозы маркетологов, крупнейшие производители начинают сворачивать выпуск плазменных панелей.

В 2013—2014 годах производство прекращают Samsung, Panasonic и LG. Последним изготовителем плазменных телевизоров в мире был китайский концерн Changhong Electric в провинции Сычуань, но и он «перекрыл газ» (ионизованный, конечно же) вскоре после 2014-го.

Одной из причин упадка стали еще и некоторые особенности самой технологии.

Плазменные панели выдавали картинку с искажением в местностях выше 2000 метров над уровнем моря, потребляли несколько сот ватт электроэнергии (по сравнению с примерно 60 Вт у кинескопных), давали наводки на радиоприемники.

Кроме того, среди потребителей бытовала легенда, что если на каком-то участке экрана постоянно демонстрируется одно и то же яркое изображение (например, логотип телеканала), то в этом месте экран выгорает.

На самом деле, запас живучести у плазменных телевизоров был более чем достаточным: яркость снижалась наполовину лишь после 100 тысяч часов работы. Работая по пять часов в сутки, плазменный телевизор достигнет этой половинной яркостной деградации лишь через полсотни лет.

Плазменные телевизоры перестали выпускать почти два года назад, но до сих пор иногда в разговорной речи телевизор большого размера называют словом «плазма», даже если он выполнен совсем по другой технологии.

Жидкие кристаллы для маленьких и больших

Первые разработки жидких кристаллов начал австрийский ученый Фридрих Райницер еще в 1888 году. Но лишь в начале семидесятых годов нашего века жидкие кристаллы воплотились в первых устройствах — экранах для наручных часов и калькуляторов.

Со временем стало возможным использовать ЖК-матрицы и в ноутбуках и телевизорах, но первые такие матрицы были выполнены по «пассивной» технологии, и даже при простой прокрутке текстового документа на экране был виден почти один лишь шум. С 1972 года начали выпускать матрицы по «активной» технологии, и движущееся изображение на экране стало более стабильным.

В июне 1983 года компания Casio представляет первый в мире телевизор на жидких кристаллах — модель TV-10. У него экран диагональю всего 2,7 дюйма (6,8 см), работает аппарат от трех батареек размера АА, а стоит он 299 долларов 95 центов. Обозреватели электроники отмечали низкую яркость и контрастность телевизора.


Изображение: YouTube

А два года спустя та же Casio выпускает и первый цветной телевизор на жидких кристаллах — TV-1000. В 1988 она же выпускает и 14-дюймовый ЖК-телевизор на тонкопленочных транзисторах (TFT). Наконец-то телевизоры можно делать если не совсем плоскими, то хотя бы тонкими, но при этом не жертвовать размером экрана. Появляются и совсем плоские модели: так, Casio TV-70 (1986) имеет толщину всего в 13 мм.

Японские корпорации бросаются в гонку миниатюризации: LCD-телевизоры сначала настольные, потом носимые за ручку или ремешок и, наконец, карманные. Появляется анекдот:

Встречаются два японских инженера. Один другого спрашивает:

— Угадай, в какой руке у меня телевизор.

— В левой.

— Правильно. А сколько их там?

Летом 1982 года компания Seiko, известный производитель часов, выпускает модель TV-Watch — телевизор в корпусе наручных часов. Правда, в наручные часы встроен лишь монитор — а сам приемник заключен в корпус размером с кассетный плейер, который соединен с часами кабелем. Предполагается, что кабель пропущен у вас внутри рукава, приемник лежит в кармане, а звук вы слушаете через наушники.


Фото с сайта guenthoer.de

Экран диагональю 1,2 дюйма (25,2×16,8 мм) отображал 10 оттенков серого, на одном комплекте батарей телевизор мог продержаться до 5 часов. Часовизор стоил 108 тысяч иен, или примерно 450 долларов; в США рекомендованная цена составляла 495 долларов. Модель засветилась в фильмах «Сети зла» с Томом Хэнксом и в серии про Джеймса Бонда «Осьминожка», где ей пририсовали цветной экран.


Фото с сайта TheLegendOfQ.co.uk

А в начале-середине девяностых компании развивают и усовершенствуют технологию плоскостного переключения IPS. Так, Fujitsu представляет систему MVA (мультизональное вертикальное выравнивание), Samsung представляет собственное видение этой же системы — PVA.

Матрицы отображают полную глубину цвета (до 8 бит на канал), у них большие углы обзора (до 178 градусов), — теперь можно делать и полноценные, комнатные телевизоры.

IPS- и PVA-экраны начинают доминировать на рынке ЖК-телевизоров, «жидкие кристаллы» уверенно идут в рост и потихоньку догоняют «плазму». Правда, LCD-телевизоры считаются маленькими, чуть ли не кухонными, а если хочешь в гостиную — то только плазменный.

Плазменные телевизоры привлекают покупателей большим размером экрана, жидкокристаллические телевизоры пока на диагональ свыше 42 дюймов не замахиваются (дорого очень), но к середине «нулевых» начинают перетягивать потребителей большим разрешением. В результате складывается интересная картина: LCD-телевизоры имеют меньшую диагональ, чем плазменные, но цена тех и других сопоставима.

Первый ЖК-телевизор «Горизонта»

ЖК-телевизоры воюют на два фронта: и с плазменными панелями, и с кинескопными моделями. В конце 2007-го кинескопные телевизоры по уровню мировых продаж проигрывают жидкокристаллическим моделям. Корпорации начинают сокращать или вовсе сворачивать производство кинескопных моделей.

Например, Sony в марте 2008-го закрывает последний завод, выпускавший известную линейку телевизоров Trinitron. Минский завод «Горизонт» свой первый ЖК-телевизор выпустил в 2004 году, а от кинескопных моделей решил отказаться только осенью 2012-го.

В ходе войны с «плазмой» телевизоры на жидких кристаллах тоже втягиваются в «гонку диагоналей». В октябре 2004-го Sharp анонсирует 65-дюймовую панель, в марте 2005-го Samsung представляет телевизор диагональю 82 дюйма, в августе 2006-го LG достигает отметки в 100 дюймов, в январе 2007-го Sharp демонстрирует телевизор LB-1085 диагональю в 108 дюймов (2,73 м).

Летом 2008-го этот «ящик» поступил в продажу по цене в 11 миллионов японских иен (на тот момент — примерно 103 тысячи долларов). В том же 2008-м «Горизонт» выпускает самый большой LCD-телевизор в Беларуси — диагональю 42 дюйма; в 2012-м на предприятии собирают 70-дюймовый телевизор ценой в 13 тысяч долларов. Впрочем, сегодня в каталоге «Горизонта» и «Витязя» самый большой ЖК-телевизор имеет диагональ лишь в 50 дюймов.


Фото с сайта TheFutureOfThings.com

Светодиоды для изогнутых телевизоров

Еще одна перспективная технология создания телевизионных экранов — органические светодиоды (OLED). Правда, частенько OLED путают с маркетинговым термином LED TV (или просто LED).

Последний обозначает, что для подсветки экрана используется матрица из светодиодов, а не более привычные люминесцентные лампы, размещенные по краям монитора. Органические же светодиоды — это элементы, которым не нужна подсветка, потому что источником света выступают они сами.

OLED-экраны уже давно используются в сотовых телефонах и фотоаппаратах, но вот телевизионную панель из органических светодиодов долго изготовить не могли. Дело в том, что синие светодиоды имеют намного меньший срок жизни, чем красный и зеленый.

Поэтому срок службы всего экрана зависел фактически от одних лишь синих диодов. Началось их выгорание (а такое могло случиться уже через три года работы) — и дорогой телевизор, считай, испорчен. На преодоление этих сложностей ушло время, и в начале «нулевых» компании начали соревноваться за первенство в выводе OLED-телевизора на рынок и за наибольшую диагональ экрана.

В мае 2003-го на выставке Society for Information Display в Балтиморе компания International Display Technology представила 20-дюймовый OLED-дисплей, а Sony — 24-дюймовый, годом позже Epson показывает 40-дюймовый монитор. В 2005-м Samsung демонстрирует 21- и 40-дюймовую панели, предназначенные специально для телевизоров, но еще почти два года сами телевизоры ни от одной фирмы так и не будут предъявлены общественности.

И лишь в 2007 году на выставке Consumer Electronics Show компания Sony показала первый в мире OLED-телевизор. Он обладал скромной диагональю всего в 11 дюймов (28 см) и разрешением 960×540 пикселей. Зато толщина матрицы составила всего 3 мм, так что в ее рамке негде было разместить разъемы.

Поэтому экран укрепили на подставке, где и находятся органы управления, порты и динамик. Телевизор, получивший индекс XEL-1, поступил в продажу в декабре 2007 года по цене примерно в 1700 долларов.


Фото с сайта Biglobe.ne.jp

Не можем не упомянуть и о «войне диагоналей». Правда, в случае с OLED-телевизорами завоевания были не такими уж громкими, как в случае с плазменными и жидкокристаллическими телевизорами.

Осенью 2008-го Samsung демонстрирует 40-дюймовый телевизор с разрешением 1920×1080 пикселей, в январе 2012-го Samsung и LG практически одновременно интригуют публику 55-дюймовой моделью (аппарат от LG оценен в 7900 долларов, и он объявлен самым большим коммерчески доступным телевизором).


Samsung ES9000. Фото: geeky-gadgets.com

Летом того же года Samsung показывает модель ES9000 с матрицей диагональю в 75 дюймов и стоимостью в 17500 долларов, а осенью 2013-го на выставке IFA в Берлине компания LG отвечает изогнутым телевизором с диагональю экрана в 77 дюймов (196 см). Похоже, что гонка остановилась, но, вероятно, лишь временно.

И пусть итоговый показатель почти в полтора раза меньше максимальной диагонали LCD-телевизора и в два раза меньше рекордной диагонали «плазмы», все же и этот аппарат разрешением 3840×2160 пикселей стоит немалых денег. На сайте LG модель 77EG9700 помечен ярлыком «предполагаемая цена — 24 999 долларов 99 центов».

Другая 77-дюймовая модель — LG 77EC980V — продается и в Минске, магазин выставил ценник в 69 908 рублей и 98 копеек (или примерно 35 760 долларов). Ставшие плоскими телевизоры требуют очень пухлых кошельков.

Новое поколение телевизоров Samsung SUHD передают изображение максимально точно и реалистично. Благодаря передовой технологии квантовых точек даже мельчайшие детали и темные области в изображении различимы при любом освещении.

Около 100 лет назад телевидение из лабораторных экспериментов превратилось в общественную забаву: начали устраивать публичные просмотры, появляются первые промышленные телевизоры. Эти гаджеты прошли огромный путь от простых ящиков с вращающимися дисками до сложнейших электронных систем с плазмой, жидкими кристаллами и лазерами.

Как развивался телевизор и кто приложил руку к созданию «убийцы кинематографа»? В новом цикле статей «110 лет телевидения» сайт вспоминает яркую историю устройств, передающих движущуюся картинку.

«Пантелеграф» и диск Нипкова

Первые работы в области передачи изображения на расстоянии появились эдак полтораста лет назад: в 1862 году итальянец Джованни Казелли разработал «Пантелеграф», который позволял передавать изображения по проводам. Правда, картинка была статичной, а оригинал при этом должен был находиться на медной пластине.

До тех пор пока не открыли фотопроводимость селена и внешний фотоэффект, изображение без специальной подготовки передавать не получалось. А в 1884 году немец Пауль Нипков делает важное изобретение: диск с отверстиями, расположенными по спирали. Диск так и называется: диск Нипкова.

Если за диском поместить какой-нибудь хорошо освещенный объект и этот самый диск раскрутить, то из-за быстрого вращения дырочек на его поверхности мы будем хорошо видеть объект. Можно построить такую аналогию: если быстро бежать вдоль забора с множеством щелей, то на большой скорости щели сольются и мы увидим то, что находится за забором.

А если вместо человека за диском будет наблюдать фотоэлемент, то вот мы уже получили систему, сканирующую изображение. Теперь соединяем ее с таким же устройством с диском Нипкова, только вместо фотоэлемента используем источник света (лампу), — и тогда, находясь с другой стороны диска, мы будем видеть, как то же самое изображение восстанавливается.


Изображение из книги «Самодельный телевизор» (1937)

Чтобы изображение было четким, а путь дырочек диска не напоминал дугу, сам диск нужно было делать как можно большего размера и покрывать его большим числом крохотных отверстий, а размер кадра — как можно меньшим.

Тогда уже и сам кадр выглядит не как сегмент круга, а как прямоугольник, а траектория отверстий — почти прямая. Одно отверстие — одна строка «развертки». Известны системы, в которых было более чем по 400 отверстий. Но чаще всего использовался стандарт в 30 строк, а размер изображения едва превышал почтовую марку.

Интересно, что Пауль Нипков практически не интересовался внедрением своего изобретения и телевидением вообще, а выданный патент был отозван через 15 лет из-за отсутствия интереса к новинке.

На рубеже XIX и XX веков начинают появляться первые телеприемники. Творческий поиск изобретателей шел по непроторенным тропинкам, и их системы разительно отличались одна от другой. Еще в 1900 году русский изобретатель Александр Полумордвинов разрабатывает «телефот» — первую в мире систему цветного телевидения с диском Нипкова. С цветом работает в Германии и русский эмигрант Ованес Адамян.

В 1923 году американец Чарльз Дженкинс передает движущееся силуэтное изображение, почти одновременно с ним шотландец Джон Бэрд также транслирует силуэты, а два года спустя, в 1925-м, впервые демонстрирует телепередачу полутоновых движущихся объектов.


Джон Бэрд с куклами для чревовещания Джеймсом и Стуки Биллом перед своей телевизионной установкой, 1926 год. Фото: Wikipedia

Забавно, что когда Бэрд пришел в редакцию газеты Daily Express, редактор отправил сотрудников вниз избавиться от лунатика, который утверждает, что умеет видеть по радио, и что тот лунатик может быть вооружен.

В своей конструкции Бэрд использует диск Нипкова. В течение нескольких лет он разрабатывает цветной телевизор, устраивает трансляцию между городами и даже через океан, проводит прямую телетрансляцию скачек. Число строк вырастает с 5 до 30, а впоследствии Бэрд разработает даже 1000-строчное телевидение (которое, впрочем, останется экспериментом).

Так выглядело изображение на первом телевизоре Бэрда. Фото с сайта BairdTelevision.com

Самые первые в мире серийные телевизоры

Начинается яркая, но короткая эпоха механического телевидения. Появляются телевизионные компании во Франции, США, Германии.

В 1929-м американская компания Western Television выпускает первый в мире серийный телевизор — Visionette с диском Нипкова диаметром 17 дюймов (43 см). Всего было выпущено около 300 телевизоров этой модели.

Само устройство стоило 88,25 доллара, отдельно надо было покупать корпус (еще 20 долларов), приемник для звукового сопровождения (85 долларов) и неоновую лампу.

В пересчете на теперешние деньги (с учетом инфляции) такой комплект стоил бы около 3000 долларов. Да, поначалу телевидение было развлечением для богатых.


Телевизор Visionette. Фото с сайта EarlyTelevision.org

Телевизор Бэрда (он так и назывался — Televisor) — выпускался в Великобритании в 1930—1933 годах, всего изготовили около тысячи штук.


Фото с сайта TVHistory.tv

Первые телевизоры в СССР

В Советском Союзе первые экспериментальные телепередачи состоялись в 1931 году, а регулярные — лишь в конце 1934-го. Применялся немецкий телевизионный стандарт: 30 строк, частота 12,5 кадра в секунду (диск Нипкова должен при этом вращаться со скоростью 750 оборотов в минуту), соотношение сторон кадра 4:3. Передачи велись по полчаса в ночь с четного на нечетное число.


Расписание из журнала «Радиофронт».

Поначалу в нашей стране телелюбительство тоже было дорогим удовольствием: телеприемник марки «Б-2» (1933−1936) стоил 235 рублей. При этом телевизор надо было подключать к одному радиоприемнику, чтобы просто смотреть передачи, и еще к одному — чтобы попутно слушать звук.


Телевизор «Б-2». Фото: Википедия

Журнал «Радиофронт» популяризировал теледвижение в стране и публиковал схемы телевизоров для самостоятельной сборки; редколлегия журнала разработала несколько моделей простых телеприемников. Набор деталей для сборки телевизора модели «ТРФ-1» стоил всего 13 рублей — за эту сумму можно было подписаться на журнал на год.

Одним из первых в СССР минчанин Генрих Бортновский: уже в канун 1933 года он принимал из Москвы новогоднюю передачу. Это был первый телевизор на территории современной Беларуси.

Интересно, что в 1936-м журнал «Радиофронт» опубликовал несколько критических статей, где клеймил позором Белорусский радиокомитет за бездействие, волокиту и междоусобную войну с городским отделом радиовещания.

В результате многие телерадиолюбители не могли получить консультацию и строить свои приемники. Быть может, именно эта бездеятельность Белорусского радиокомитета способствовала развитию таланта самоучек вроде Бортновского.


Фото из журнала «Радиофронт», 1936 год

Телевизоры с зеркальным винтом

К концу тридцатых годов «телелюбительство» в СССР потихоньку становится все более массовым увлечением: ленинградский завод выпустил три тысячи телевизоров «Б-2», по журнальным схемам любители всей страны собирают сотни и сотни самодельных приемников разных конструкций.

В 1937 году книга Б. Шефера «Самодельный телевизор» тиражом в 50 тысяч экземпляров выходит в издательстве «Детиздат». Передачи в то время велись в Москве, Ленинграде, Новосибирске, Томске, Саратове, Одессе, также можно было словить иностранные трансляции.

Параллельно с дисковой развивается еще одна система механического телевидения: с зеркальным винтом.

На стержень насаживаются отполированные до зеркального блеска пластины, каждая из которых немного смещена относительно предыдущей. В результате получается этакий большой блестящий винт, похожий на спираль от мясорубки. Вращаясь с большой скоростью, винт отражал свет от неоновой лампы, и прямо на его поверхности выстраивалось изображение.

Если телевизоры с диском Нипкова зрители могли смотреть по очереди, то передачу по винтовому телевизору видели одновременно 10−15 человек. Правда, постройка такого аппарата требовала значительно больших затрат времени, а набор деталей обходился уже в 150 рублей.


Фото с сайта Television Experiments.com


Телевизор ТЗС с зеркальным винтом. Фото с сайта rw6ase.narod.ru

Использовались также механические системы с «блуждающим лучом»: диктор сидел в темной комнате, по нему бегал световой луч, проходящий через диск Нипкова, а отраженный свет попадал на фотоэлементы. Такая технология не позволяла делать передачи вне студий, но, на удивление, просуществовала довольно долго: в Великобритании до 1935-го и в Германии — до 1938 года.

Появление полностью электронных систем

Системы механического телевидения начали сворачиваться во второй половине 30-х годов. Основная причина — массовое внедрение полностью электронных систем, которое произошло в начале — середине 30-х.

В США последние механические телесети существовали при университетах и были закрыты в 1939 году. В СССР еще с 1938 года велись электронные телепередачи, но механическое телевидение просуществовало у нас до апреля 1940 года, ведь у населения было очень много промышленных и самодельных телевизоров.

Помимо уже упомянутого серийного «Б-2», мелкими сериями выпускались модели «Т-1» (Ленинградский завод имени Коминтерна), «Пионер ТМ-3» (Ленинградский радиозавод имени Козицкого) и некоторые другие — всего около полудюжины моделей.

Работы над электронным телевидением велись с начала ХХ века параллельно с изучением телевидения механического: еще в 1906 году Макс Дикманн, ученик знаменитого ученого Карла Брауна, патентует использование трубки Брауна для передачи изображений.

Годом позже русский профессор Борис Розинг регистрирует свое изобретение, доказывая техническую возможность использования катодно-лучевой трубки. В 1911 году он продемонстрирует передачу простых статичных фигур и ее прием на электронной трубке.

В 20-х годах строят и патентуют свои электронные телеустановки англичанин Алан Кэмпбелл-Суинтон, венгр Калман Тиханьи («радиоскоп»), японец Кэндзиро Такаянаги, американец Фило Фарнсуорт («диссектор»). В 1928 году ученые из Ташкента Борис Грабовский и Иван Белянский передают в эфир движущееся изображение, и на сконструированном ими электронном «телефоте» можно было разглядеть самого Белянского.

Но все же изобретателем электронного телевидения считают другого русского — Владимира Зворыкина, ученика Розинга. Зворыкин после революции эмигрировал в Америку и в конце 20-х годов разработал и запатентовал на фирме RCA приемную телевизионную трубку — кинескоп, и трубку передающую — иконоскоп.

Кинескоп позволил повысить качество принимаемой картинки: от 30—120 строк в механических системах с диском Нипкова до 400 строк и впоследствии даже до 1000 строк.


Владимир Зворыкин с иконоскопом. Фото с сайта EngineeringHistory.Tumblr.com

В 1934 году фирма Telefunken начинает регулярное электронное телевещание в Германии (два года спустя церемонию открытия Олимпийских игр в Берлине будут транслировать в прямом эфире), в 1936-м подключаются Италия, Франция, Великобритания. У истоков британского электронного телевидения стоит Исаак Шоэнберг — выходец из Пинска.

Из-за патентных разногласий в США телевидение появляется лишь в 1938-м, причем компания RCA использует в разных городах различные стандарты: скажем, в Нью-Йорке применяется иконоскоп Зворыкина, а в Филадельфии и Сан-Франциско — диссектор Фарнсуорта. Кроме того, на рынке присутствуют и другие компании со своими стандартами. К единому стандарту в США придут в 1941-м.


Владимир Зворыкин демонстрирует свой электронный телевизор, 1929. Фото: Wikipedia

Зворыкин неоднократно ездил в Европу и в СССР и консультировал компании при запуске телевидения. В результате в Советском Союзе с фирмой RCA заключили договор, и в 1938 году на Шаболовке запустили станцию электронного телевидения; регулярное вещание началось 10 марта 1939-го. Станция передавала телевизионный сигнал на частоте 49,75 МГц с разрешением 343 строки (25 кадров в секунду).

Для приема телепередач Ленинградский завод имени Козицкого по документации RCA выпустил телевизор модели «ТК-1» на 33 лампах. Это была сложная конструкция, для сборки и наладки которой требовались специалисты высокой квалификации. К концу 1938-го завод выпустил двести экземпляров, а к началу войны — около 6 тысяч телевизоров этой модели. На базе этой модели Александровский радиозавод изготовил опытную партию телевизора «АТП-1».

Телевизор «ТК-1». Фото с сайта DVostok.com

В самом Ленинграде опытный телерадиоцентр еще с 1937 года вел передачи в другом стандарте на частоте 37,5 МГц (240 строк, 25 кадров в секунду); а с сентября 1938-го начались регулярные передачи по два раза в неделю. Для приема этих программ выпустили телевизор ВРК на 24 лампах. Изготовили всего 20 экземпляров, которые использовались в качестве тестовых.

Телевизор «ВРК».

Незадолго до войны ленинградский завод «Радист» освоил выпуск телевизора модели «17ТН-1»/«17ТН-3», который позволял смотреть и московские, и ленинградские передачи, — до войны их выпустили более 2 тысяч штук.

Гигантский скачок популярности ТВ

После Второй мировой популярность телевидения сделала гигантский скачок.

В Великобритании до войны было выпущено около 19 тысяч телевизоров, в 1947 году их число оценивалось в 17 тысяч, а в 52-м — уже 1,4 млн. В США до войны выпустили около 7−8 тысяч телевизоров, в 1947-м их было уже 180 тысяч, а к 1951-му году — 10 миллионов.

В СССР незадолго до начала войны было по нескольку тысяч механических и электронных телевизоров разных стандартов. В 1944 году у нас разработали стандарт электронного телевидения в 625 строк, который утвердили через два года (также его внедрят в Европе); а еще два года спустя, в 1948-м, в Москве начались первые регулярные телепередачи в новом стандарте.

Появились телевизоры нового поколения «Москвич Т-1» и «Ленинград Т-1», а также первый массовый советский телевизор «КВН-49», который выпускался с 1948 по 1967 годы минимум на восьми заводах и разошелся тиражом в 2,5 млн экземпляров. В 1957 году число советских телезрителей превысило 1 миллион человек.


Телевизор «КВН-49». Фото с сайта Dvostok.com

Постепенно рынок стал насыщаться, и в борьбе за зрителя телекомпании по всему миру начали внедрять цветное телевидение. Но об этом мы расскажем в следующем материале проекта.!

Новое поколение телевизоров Samsung SUHD передают изображение максимально точно и реалистично. Благодаря передовой технологии квантовых точек даже мельчайшие детали и темные области в изображении разлиичимы при любом освещении.

Сегодня сложно представить, что еще каких-то сто с лишним лет назад человечество могло обходиться без телевидения. Такая техника стала привычным членом семьи, развлекая, обучая и информируя остальных домочадцев. В связи с этим интересно будет узнать, кто изобрел первый телевизор.

Очень важно отметить то, что перед появлением самого первого телевизора, было изобретено радио. Здесь мнения по поводу его «отцов-основателей» разнятся: отечественная точка зрения называет имя изобретателя радио №1 А.С. Попова, а за рубежом эту же проблему исследовали Маркони, Тесла, Бранли.

На вопрос, кто же именно изобрел телевизор, нельзя дать однозначный ответ. Далее можно назвать имя Пауля Нипкова. Именно он стал тем, кто придумал специальный прибор - диск, названный его именем. Изобретение произошло в 1884 году. Именно радиосигнал и механическая развертка стали причиной появления телевидения.

Немногие знают, что именно с помощью диска Нипкова получалось построчно считывать изображение и передавать далее на экран. Предприимчивый Джон Берд из Шотландии в конце двадцатых годов прошлого века и разработал первый телевизор, основывавшийся на этом принципе. Созданный проект он стал успешно реализовывать.

John Logie Baird

Лидерство механических телеприемников от одноименной корпорации Baird закрепилось за такими аппаратами вплоть до 30-х годов. Картинка была четкой, но без звука. Однако будущее было предопределено: оно принадлежало электронно-лучевой трубке.

Изобретение и использование ЭЛТ

Мировая тенденция технического превосходства заставляла лучшие умы работать на благо прогресса: работа над изобретением электронно-лучевой трубки (ЭЛТ) велась во многих странах. Опять же стоит выделить вклад российских ученых - в 1907 году патент на подобную разработку получает Борис Розинг. Но пришел он к этому, основываясь на предыдущих открытиях.

И здесь можно привести краткий экскурс в историю. Можно вспомнить, что еще немец Генрих Герц в 1887 году открыл влияние света на электричество: так появился фотоэффект. Тогда он не смог объяснить, в каком качестве и для чего нужен фотоэффект. Это за него сделал год спустя Александр Столетов, который попытался сконструировать прообраз современных фотоэлементов, когда был изобретен прибор «электрический глаз». После него многие ученые пытались объяснить природу этого явления. К их числу можно отнести и Альберта Эйнштейна.

Важны и иные открытия, повлиявшие на будущее возникновение телевидения. К примеру, в 1879 году англичанин-физик Уильям Крукс создает вещества (люминофоры), способные светиться под воздействием катодного луча. А Карлом Брауном даже была сделана попытка создать будущий кинескоп. Как раз благодаря этому брауновскому кинескопу и смог обосновать теорию получения таким образом изображения уже упомянутый нами Борис Розинг. А в 1933 году его ученик Владимир Зворыкин создал первый телевизор с иконоскопом - так он назвал электронную трубку.

Именно Зворыкина и считают «отцом» современного тв. Даже первый в мире телевизор создавался в его одноименной американской лаборатории (он был эмигрантом, покинувшим страну после Октябрьской революции). А в 1939 году появились первые модели для массового производства.

Это привело к тому, что в дальнейшие годы первые телевизоры активно завоевывало страны Европы - сначала в Великобритании, Германии и так далее. Сначала все изображение передавалось в оптико-механической развертке, но потом, с повышением качества изображения, состоялся переход на развертку луча в электронно-лучевой трубке .

Первые телевизоры в СССР появились уже в 1939 году — их стал выпускать ленинградский завод «Коминтерн». Принцип работы заключался в действии диска Нипкова, а потому такую приставку, имеющую экран 3 на 4 см, надо было подключать к радиоприемнику . Затем требовалось переключить радио на другие частоты - в результате можно было смотреть те передачи, которые транслировались в европейских странах.

Интересно было и то, что такие первые телевизоры могли изготовить все желающие. Специально для этого в журнале «Радиофронт» была размещена соответствующая инструкция.

Регулярная телетрансляция была начата в 1938 году Опытным Ленинградским центром. А в столице телепрограммы стали выходить в эфир примерно через полгода. Интересно, что в каждом из телецентров этих городов использовались разные стандарты разложения, что требовало использования определенных моделей техники.

  1. Для приема передач Ленинградского телерадиоцентра использовалось телеустройство «ВРК» (в расшифровке - Всесоюзный радиокомитет). Это был прибор с экраном 130×175 мм, работу кинескопа в котором обеспечивали 24 лампы. Принцип работы - разложение на 240 строчек . Интересно, что в тридцатых годах прошлого века было выпущено 20 экземпляров подобного устройства. Такая техника устанавливалась в домах пионеров и дворцах культуры с целью коллективного просмотра.
  2. Московский телецентр вел вещание с разложением на 343 строки - это воспринималось приборами «ТК-1». Здесь уже подразумевалось более сложное устройство с 33 лампами. Только за 1938 год их было выпущено 200 штук, а к началу Великой Отечественной войны — 2 тыс. экземпляров.

На этом изыскания инженерной мысли человека не останавливались - должны же были рано или поздно появиться и упрощенные модели. Например, на ленинградском заводе «Радист» в 1940 году был предложен серийный вариант «17ТН-1», который мог воспроизводить программы как телевидения Ленинграда, так и Москвы. Производство было запущено, но до начала военных действий успело выйти всего 2 тыс. штук.

Также можно привести пример упрощенной модели под названием «АТП-1» (Абонентский телевизионный приёмник №1) — он являлся прообразом современного кабельного абонентского телевидения. Его выпускал Александровский завод перед войной.

Когда телевидение стало цветным

Все вышеописанное рассказывает о передаче черно-белого изображения. Ученые же продолжали работать над тем, чтобы оно стало цветным.

Когда же появились цветные телевизоры? Впервые об этом начали задумываться еще во время механических телеприемников. Одни из первых разработок представляет Ованес Адамян, который еще в 1908 году получает патент на умеющий передавать сигналы двуцветный прибор . Нельзя не упомянуть Джона Лоуги Брэда, того самого изобретателя механического приемника. Именно им в 1928 году было собран цветной телевизор, который последовательно передавал три изображения при помощи синего, красного и зеленого светофильтра.

Но это были только попытки. Настоящий скачок в области развития цветного телевидения произошел уже после окончания Второй мировой войны. Раз все силы были брошены на гражданское производство, то это неминуемо привело к прогрессу в этой области. Так и случилось в США. Дополнительной подоплекой стало использование дециметровых волн для передачи изображения.

Это привело к тому, что уже в 1940 году американскими учеными была презентована система «Тринископ». Она была примечательна тем, что в ней были использованы три кинескопа с различными цветами от люминофорного свечения, каждый из которых воспроизводил свой цвет изображения.

Что касается отечественных просторов, то в СССР аналогичные технические разработки стали появляться только в 1951 году. Но уже год спустя и простые телезрители могли увидеть пробную цветную трансляцию.

В 70-е года телевизор стал привычным техническим прибором во многих домах мира. Советское пространство не стало исключением, единственное, что стоит отметить: цветные телеприемники оставались в нашей стране дефицитными практически до конца восьмидесятых годов прошлого столетия.

Прогресс не стоит на месте

Изобретатели пытались улучшить полученный результат - так в 1956 году появился пульт дистанционного управления. Кто создал подобное полезное устройство? Он был разработан Робертом Адлером в 1956 году. Принцип его работы заключался в передаче ультразвуковых сигналов , которые были промодулированы соответствующими командами. Самый первый пульт мог только управлять громкостью и переключать каналы, но и на тот момент это было довольно весомым заявлением.

Что касается инфракрасной версии пульта , то она появилась в 1974 году в результате разработок Grundig и Magnavox. Его рождение было продиктовано появлением телетекста, который требовал более точного управления, а, значит, тогда появились и кнопки. А уже в восьмидесятых годах пульт дополнительно используют как аналог геймпада, ведь тогда и телевизоры стали дополнительным монитором к первым бытовым компьютерам и игровым приставкам.

С появлением видеомагнитофонов появилась необходимость в дополнительном внедрении компонентного видеовхода (кроме уже имеющегося аналогового антенного).

С началом двадцать первого столетия эра кинескопов подошла к концу - начали появляться плазменные панели и жидкокристаллические телевизоры . А уже к 2010-м годам кинескопные модели были практически вытеснены с рынка плоскими устройствами в формате LCD и PDP. Многие из них могут подключаться к интернету и даже демонстрировать возможности просмотра 3D-контента.

Сегодняшний телеприемник мало похож на своего прародителя - он имеет функции домашнего медиацентра , сохраняя при этом функции просмотра эфирного и кабельного телевидения. И это уже не говоря о самом качестве изображения, передаваемого в стандарте высокой (а в топовых моделях и сверхвысокой) четкости.



error: Контент защищен !!