Переходное затухание и защищенность. Линейные устройства. Факторы, ухудшающие передачу

Для уменьшения влияния переходного затухания применяются кабели с витыми (скрученными) парами. Это многожильные кабели, у которых жилы скручены по парам или четверкам.

Принцип борьбы с помехами переходного затухания заключается в том, что при скрутке провода, влияющие на отдельные участки кабеля, наводят электромагнитную энергию, равную по амплитуде и противоположную по направлению, как это показано на рис. 6.7. При идеально сбалансированной скрутке (равный шаг скрутки, идеальная симметрия проводов) переходное затухание равно нулю.

Однако в реальной обстановке имеется большое различие амплитуд наведенных сигналов. Оно возникает из-за различного расположения проводов и их различного сопротивления (см. асимметрию).

В связи с проблемой устранения переходного затухания большое внимание уделяется симметрированию проводов разговорного тракта (провода a и b). Любая нагрузка, подключаемая к одному проводу, должна иметь аналог по сопротивлению, подключаемый к другому проводу.

Шумы (помехи)

Рис. 6.8. Метод устранения помех с помощью "скрещивания" проводов

Наличие шумов может, в частности, значительно снизить максимальную длину абонентской линии, которую можно использовать для высокоскоростной связи. В больших городах это помехи от электротранспорта, от мощного промышленного оборудования (включение и отключение мощного оборудования), помехи, возникающие из-за воздействия радиопередатчиков, излучение находящегося рядом радиопередатчика передачи данных. Источником помех может стать разнородность оборудования: например, применение в одном помещении электромеханических и электронных систем. В современных системах, применяющих абонентские устройства передачи данных, большое значение имеет показатель коэффициент импульсных помех.

Коэффициент импульсных помех служит для цифровой оценки состояния линии, он указывает количество ошибок на определенное число переданных битов. Нормальным считается коэффициент ошибок - это означает, что на битов в канале появляется одна помеха, которая может привести к ошибке. Минимально приемлемая величина коэффициента ошибок (допускается обычно при применении радиотракта) составляет . Величина считается хорошей. Следует учитывать, что эти показатели условны. Они измеряются за определенный интервал времени, например, за час. Но в реальности в течение каждого интервала они распределяются неравномерно и могут приходить концентрированно (пачкой). Поэтому иногда вводят коэффициент "пачечности" (концентрации ошибок), который показывает отношение количества ошибок, полученных в данном интервале времени, к ожидаемому среднему по всем интервалам.

Для преодоления ошибок применяются различные алгоритмы, которые будут рассмотрены далее. Помехи ухудшают качество приема речи, а при передаче данных могут привести к неверному их принятию или задержкам, замедляющим реальную скорость обмена данными (скорость модема).

Наибольшие проблемы возникают при ухудшении этого коэффициента и при контроле качества канала со стороны передающих или принимающих устройств. Если эти устройства настроены на отключение канала при превышении ошибки, то при случайных возмущениях в сети часто происходит полное отключение станции. Поэтому при автоматическом контроле этого параметра необходимо оставлять возможность регулировки порога.

Измерение затухания

Стандартный уровень шума, относительно которого измеряются помехи, равен 1 пВт или Вт. Это равняется принятому акустическому порогу слышимости (см. раздел 1.1 в части "Акустические свойства человеческого уха"). В относительных единицах дБм (децибел­милливатт, мощность, отсчитываемая относительно одного милливатта) это составляет 90 дБм.

Мощность, измеряемая относительно эталона 1 пВт, называется эталонной и обозначается в дБэт. Мощность, указанная в дБэт, показывает, насколько уровень шума превышает эталонный.

Уровень 20 дБэт равен 70 дБм, т.е. уровню, измеренному относительно одного децибела.

И наоборот,

Однако, как мы уже отмечали в разделе 1.1, акустическое восприятие человеком звука зависит от частоты. Эта чувствительность изображается кривой на рис. 1.2 (Диаграмма слуха) и имеет максимум на частоте 1000 Гц. Поэтому при измерении мощность шума усредняют (взвешивают) в соответствии с псофометрической кривой, учитывающей уровень слышимости в соответствии с чувствительностью человеческого уха. Приблизительно эта величина составляет 0,562 от мощности шума, измеренной в пВт. Эта мощность называется псофометрической мощностью и обозначается пВтп. Поэтому мощность, выражаемая в дБм, легко пересчитывается в дБп (децибелы псофометрические).

Если сигнал шума имеет мощность , то затухание, выраженное в дБм, равно

а затухание, выраженное в дБп,

Учитывая, что эталонный уровень

Для полноты изложения отметим, что в Северной Америке принято учитывать частотную зависимость восприятия звука с помощью C-взвешивания. Кривая восприятия звука определяется путем измерения чувствительности на различных типах телефонных аппаратов (не менее 500). В этом случае диаграмма восприятия звука несколько отличается от псофометрической. Приблизительно эта величина составляет 0,631 от мощности шума, измеренной в пВт. В этом случае

Задержка передачи

Задержка передачи информации (запаздывание) измеряется временем между поступлением сигнала на вход системы передачи и появлением его на выходе. На это время влияют: параметры линии, параметры аппаратуры, быстродействие и алгоритмы обработки.

Задержка информации приводит к наличию эффекта эха при передаче речи. А фазовые задержки могут привести к ошибкам в передаче данных или к уменьшению скорости передачи за счет времени, необходимого для исправления ошибок.

Пупиновские катушки

Для использования существующей абонентской кабельной сети с целью передачи интегральной информации следует упомянуть еще одно решение, применяемое на абонентском участке в целях увеличения дальности передачи информации в речевом диапазоне - это пупиновские катушки. Известно, что высокие частоты спектра речи подвержены затуханию больше, чем низкие. Это определяется преимущественно емкостным характером абонентской линии. Зависимость затухания от частоты приводит к искажениям речевого сигнала, которые называются "амплитудными искажениями". В существующих сетях получило распространение введение искусственной индуктивности, которая ослабляет емкостный характер. Эти устройства получили название "пупиновские катушки" (по имени их изобретателя, словацкого ученого Пупина). Эти катушки используются на длинных межстанционных и абонентских сельских линиях. Улучшая параметры речи, они препятствуют расширению частотного диапазона (например, для услуг, требующих широкой полосы частот) .

Отводы

Существует три категории отводов абонентской линии в распределительной или магистральной сети. Первый - отвод для подключения резервного оборудования (jumping-off). Он используется в качестве резервной линии для подключения телефонного аппарата в другое место (например, дополнительная розетка). Большую часть времени он находится в состоянии, когда к нему не подключена аппаратура. Отвод для перехвата информации (taping) подразумевает включение оборудования, которое само активно принимает информацию.

Если использование кабельных отводов и допустимо в аналоговых телефонных сетях, обычно такие отводы оказывают серьезное воздействие на работу цифровых систем передачи. Цифровой сигнал, передаваемый по кабелю абоненту, попадает также и в каждый кабельный отвод. Отраженный от конца такого отвода сигнал накладывается на исходный сигнал, подаваемый абоненту, что приводит к значительному увеличению числа ошибок. К цифровому абонентскому тракту не должно быть подключено никакое телефонное оборудование.

Еще один тип отвода - неиспользуемая пара (bridged tap): дополнительная пара проводов, проложенная рядом с основными парами кабеля. Она обычно ни к чему не подключена, но может понадобиться в будущем для подключения нового пользователя. Короткие неиспользуемые пары не влияют на сигналы в речевой полосе, но могут быть чрезвычайно вредны для цифровых сигналов высокой частоты.

Потери

Качество обслуживания телефонных вызовов на сети определяется вероятностью потерь (отказов в обслуживании) из-за отсутствия свободных и доступных коммутационных приборов или каналов.

Определению всех понятий и расчету потерь посвящена большая область теоретических исследований. Для детального рассмотрения этих вопросов рекомендуются книги . Кратко приведем нормы на обслуживания.

Имеются потери двух типов - явные потери и потери по ожиданию. В первом случае при отсутствии свободных путей или каналов заявка снимается с обслуживания, во втором случае - ставится на ожидание. Она снимается с обслуживания, если время ожидания превышает заранее заданную величину.

Суммарные потери любого типа от абонента до абонента не должны превышать:

  • при связи через городскую телефонную сеть - 0,03;
  • при связи через пригородную зону - 0,04;
  • при связи через междугороднюю сеть - 0,005.

Эти потери следует разделять на станционные и линейные. Поскольку стоимость линейных сооружений больше стоимости станционной аппаратуры, для станций устанавливаются нормы небольшой величины, а оставшаяся часть приходится на потери из-за отсутствия линий и каналов.

Для станций существуют следующие нормы:

  • от абонента до входа (выхода) станции - 0,001,
  • и между двумя входами (выходами) станции - 0,005.

В конце отметим, что норма потерь очень отражается на технико­экономических показателях сети: чем меньше норма потерь, тем больше требуется установить оборудования.

Качество обслуживания

Рассмотренные выше показатели потери характеризуют только одну сторону услуги передачи речи. В современных сетях телекоммуникаций применяется характеристика качество обслуживания. Эта характеристика является комплексной при оценке класса и качества услуг.

Все виды трафика можно разделить на три основные категории .

Трафик реального времени включает в себя аудио­ и видеоинформацию, критичную к задержкам при передаче. Обычно качество характеризуется явными потерями. Допустимые значения задержек обычно не превышают 0,1 с (сюда входит время на обработку пакетов конечной станцией). Кроме того, задержка должна иметь малые флуктуации (с ними связан эффект "дрожания"). При сжатии информации трафик данной категории становится очень чувствительным к ошибкам при передаче, а из-за жестких требований к задержкам при передаче потоков в режиме реального времени возникающие ошибки не могут быть исправлены с помощью повторной посылки.

Трафик транзакций (интерактивный). При передаче этого вида трафика задержки не должны превышать 0,1 с. В противном случае пользователи будут вынуждены прерывать работу и ждать ответа на свои сообщения. Такая схема обмена информацией снижает производительность труда, а разброс в значениях задержек может привести к возникновению чувства дискомфорта у пользователей. В некоторых случаях превышение допустимого времени задержек приводит к сбою рабочей сессии.

Трафик данных. Задержки при передаче трафика этой категории могут иметь практически любые значения и достигать даже нескольких секунд. Для такого трафика полоса пропускания более важна, чем время задержек: увеличение пропускной способности сети влечет за собой уменьшение времени передачи. Приложения, передающие большие объемы данных, разработаны преимущественно в расчете на предоставление им всей доступной полосы пропускания сети.

Следующим шагом на пути к реализации коэффициента качества обслуживания QoS стала разработка механизма явного управления скоростью трафика (ECR - Explicit Rate Control), который в течение ряда лет довольно активно используется в сетях ATM. В последнее время все чаще высказывается мнение, что ECR можно применять также со стеком протоколов TCP/IP. Этот механизм способен работать автономно либо совместно с существующими алгоритмами организации очередей. Основные задачи, которые он позволяет решать:

  • рост производительности каналов связи;
  • уменьшение времени ожидания реакции сети;
  • увеличение степени детализации сетевого управления благодаря контролю за отдельными потоками трафика.

Преимущества ECR таковы:

  • возможность точного управления распределением полосы пропускания между входящими и исходящими потоками трафика;
  • снижение нагрузки на сеть, связанной с повторной передачей пакетов с ошибками;
  • уменьшение длины очередей в маршрутизаторе (и, как следствие, снижение нагрузки на его центральный процессор);
  • значительное сокращение времени доставки пакета и уменьшение его флуктуаций, более быстрая адаптация к изменениям ситуации. Реализацию этого механизма можно изучить в и .

Краткие итоги

В первом случае при отсутствии свободных путей или каналов заявка снимается с обслуживания, во втором случае - ставится на ожидание. Она снимается с обслуживания, если время ожидания превышает заранее заданную величину.

  • В современных сетях телекоммуникаций применяется характеристика качество обслуживания. Эта характеристика является комплексной при оценке класса и качества услуг.
  • Трафик реального времени включает в себя аудио­ и видеоинформацию, критичную к задержкам при передаче. Обычно качество характеризуется явными потерями. Допустимые значения задержек обычно не превышают 0,1 с (сюда входит время на обработку пакетов конечной станцией).
  • Трафик транзакций (интерактивный). При передаче этого вида трафика задержки не должны превышать 0,1 с. В противном случае пользователи будут вынуждены прерывать работу и ждать ответа на свои сообщения.
  • Трафик данных. Задержки при передаче трафика этой категории могут иметь практически любые значения и достигать даже нескольких секунд.
  • Схема, включаемая в линию и выполняющая переход от двухпроводной линии к четырехпроводной, называется дифференциальной системой (hybrid).
  • При работе дифференциальной схемы возможен переход информации с цепей передачи на цепь приема, как это показано на рисунке пунктирной линией.

Такой переход вызывает у абонента эффект эха. Явление "эхо" заключается в поступлении в приемник сигнала передатчика.

  • В цифровых системах для улучшения качества тракта применяется цифровая схема эхокомпенсации. Ее принцип заключается в том, что передаваемая в линию информация через цепь задержки передается в сумматор, стоящий в цепи приема. Там она вычитается (алгебраически суммируется) из принимаемого потока. Задержка и параметры сигнала выбираются таким образом, чтобы при вычитании уничтожить сигналы, перешедшие из собственной цепи передачи.
  • Метод эхоподавления основан на том, что при передаче информации закрывается (ослабляется) цепь собственного приема. При эхоподавлении может происходить ухудшение качества связи в момент, когда оба абонента активны, а тракт приема одного из них заблокирован.

Качественные показатели функционирования линий СКС на основе электропроводных кабелей зависят от целого ряда факторов. В частности, в случае неэкранированной конструкции витая пара подвергается воздействию со стороны внешнего электромагнитного излучения.

06.07.2010 Андрей Семенов

Качественные показатели функционирования линий СКС на основе электропроводных кабелей зависят от целого ряда факторов. В частности, в случае неэкранированной конструкции витая пара подвергается воздействию со стороны внешнего электромагнитного излучения. Кроме того, часть энергии передаваемого сигнала переходит во внешнее электромагнитное излучение. Плотное прилегание однотипных кабелей внутри кабельных каналов приводит к тому, что соседние цепи оказываются в зоне действия излучения, создаваемого информационным сигналом. Данное излучение вызывает в них наведенные токи. У этого эффекта есть свое название: наводки.

Наводки, накладываясь на передаваемые по тем же парам полезные сигналы, становятся для последних помехами, которые в силу своей природы называются переходными. Когда уровни полезного сигнала и наводки становятся соизмеримыми, на приеме возникают ошибки, что в конечном итоге снижает качество связи.

Переходная помеха имеет множество разновидностей. При расчете качественных показателей линии связи могут приниматься во внимание как все виды наводок, так и только некоторые из них. Конкретный перечень зависит от особенностей организации передачи и приема информационных сигналов. При анализе переходных помех необходимо учитывать следующие факторы:

  • взаимное расположение источника наводки и места взаимодействия порождаемой им помехи с информационным сигналом;
  • количество влияющих цепей, которые необходимо принимать во внимание при определении величины переходной помехи;
  • организационная принадлежность цепей, являющихся источником и приемником переходной помехи, к одному или различным трактам передачи информации.

По месту измерения различают помеху на ближнем и дальнем концах. В расчет принимается также количество влияющих цепей: обычно рассматривают одинарную (одна влияющая цепь) и суммарную (более одного источника) переходную помеху. Если источник помехи и место ее измерения относятся к одному кабелю (стационарной линии или тракту), то речь идет о внутрикабельной или просто о переходной помехе, если к разным - то о межкабельной или (в общем случае) межэлементной. Кроме того, эти факторы могут произвольным образом комбинироваться при анализе. Иначе говоря, в определенных обстоятельствах возникает необходимость в определении, например, суммарной наводки на дальнем конце или даже межкабельной суммарной наводки на ближнем конце.

Упомянутые наводки можно назвать прямыми, так как они создаются непосредственно источником возмущающего сигнала в подверженной их влиянию цепи. В технике сетей связи общего пользования наряду с прямыми наводками иногда приходится учитывать косвенные наводки - так называемое влияние через третьи цепи. Благодаря малому шагу скрутки горизонтальные кабели СКС характеризуются заметно более низкими значениями переходных наводок. По этой причине косвенные влияния через третьи цепи можно считать пренебрежимо малыми на фоне прямых, поэтому учитывать их не имеет смысла.

Необходимость использования столь разноплановых характеристик влияния обусловлена тем, что наводки различной природы являются доминирующим источником помехи в симметричных кабельных трактах СКС. Расширение перечня составляющих переходной помехи связано с объективной тенденцией к увеличению производительности сетевых интерфейсов. Этот процесс сопровождается расширением диапазона рабочих частот; кроме того, при конструировании оборудования приходится применять все более сложные схемы организации связи.

УЧЕТ И АНАЛИЗ ПЕРЕХОДНЫХ ПОМЕХ

Далее речь пойдет преимущественно о линейных кабелях, которые представляют собой наиболее «шумящий» элемент кабельного тракта СКС (Рисунок 1). Протяженность кабельных трактов СКС сравнительно небольшая (свыше 90% всех стационарных линий в правильно спроектированной СКС не превышают по длине 70 м), а ширина частотного диапазона достаточно велика. Поэтому, в отличие от линий сетей связи общего пользования, при их расчете и анализе необходимо учитывать переходную помеху со стороны других компонентов СКС (стационарной линии и трактов).

Шнуры отличаются от линейных только конструкцией проводника (семипроволочный вместо однопроволочного), несколько большей толщиной общей оболочки и пластичностью материала, используемого при их изготовлении, - тем самым обеспечивается необходимая механическая стабильность при многочисленных изгибах. Таким образом, переходные влияния этих разновидностей кабелей можно анализировать одинаково.

Стандарты СКС запрещают параллельное подключение к цепям передачи сигналов в пределах стационарной линии. С учетом этого ограничения единственным кандидатом на роль прочего компонента остаются соединители разных видов (разъемные и неразъемные). При таком подходе наряду с межкабельной переходной помехой можно рассматривать более общую межэлементную помеху. Она возникает в результате наводки, направленной с одного разъемного соединителя или неразъемного сростка на другой. Из-за точечного характера соединителя для этого иногда приходится несколько изменить модель описания влияния одних цепей на другие.

Отдельные помеховые составляющие одной частоты могут суммироваться с произвольной фазой или синфазно. В первом случае говорят о суммировании по мощности, во втором - по напряжению. Отдельные разновидности переходной помехи формируются независимо друг от друга, поэтому они воздействуют на сигнал аддитивно (иначе говоря, помехи суммируются по мощности). Суммирование по напряжению увеличивает амплитуду наводки и ее воздействие.

Некоторые производители кабельных систем в конце 90-х годов прошлого столетия предлагали нормировать так называемую глобальную переходную помеху (Global CrossTalk, GXT). Величина GXT численно равна сумме переходных помех, создаваемых источниками, которые находятся на обоих концах кабеля, а также вне его. Ввиду их статистической независимости суммирование отдельных составляющих выполняется по мощности, а не по напряжению (синфазно). Однако данный параметр не получил широкого распространения из-за низкой информативности - слишком уж разный характер изменения демонстрируют образующие его отдельные составляющие при вариации характеристик линии.

ПОНЯТИЕ ПЕРЕХОДНОГО ЗАТУХАНИЯ

Разность между уровнями исходного влияющего сигнала и наводки, создаваемой им в соседней цепи, называется переходным затуханием. Таким образом, переходное затухание по определению является положительной величиной. Введение данной характеристики весьма удобно с методической точки зрения: физический процесс (переходная помеха) и численная мера интенсивности этого процесса (переходное затухание) обозначаются двумя различными терминами.

Термин «переходное затухание» используется в кабельной технике и технике связи уже несколько десятков лет и отличается четкостью и логичностью. Во-первых, затухание определяется в полном соответствии с основополагающим отечественным ГОСТ 24204-80. Во-вторых, переход понимается как пространственное явление, так как источник наводки и место определения ее фактической величины не имеют гальванической связи.

Терминология в отношении переходного затухания тесно связана с отдельными разновидностями переходной помехи. При количественном описании воздействия от наводок говорят о переходном затухании на ближнем и дальнем концах, о суммарном переходном затухании и т. д., а также об их произвольных комбинациях.

Введение различных видов переходного затухания позволяет описать помеху в количественной форме, учесть отдельные ее составляющие, добиться более точного определения качественных показателей формируемого тракта передачи и осуществить их оптимизацию на практике.

ПЕРЕХОДНОЕ ЗАТУХАНИЕ НА БЛИЖНЕМ И ДАЛЬНЕМ КОНЦАХ

Симметричный кабель, а также стационарная линия и тракт, реализованные на его основе, изначально предназначены для передачи информационного сигнала между пространственно разнесенными точками и, таким образом, представляют собой протяженные объекты. Если источник сигнала, порождающего наводку, и место ее измерения находятся на одном конце этих объектов, то говорят о переходном затухании на ближнем конце, если на разных - о переходном затухании на дальнем конце (Рисунок 2).

Для обозначения переходного затухания на ближнем конце широко используется англоязычная аббревиатура NEXT (Near End Crosstalk), а для переходного затухания на дальнем конце применяется сокращение FEXT (Far End Crosstalk). Более точным было бы написание NEXT loss и FEXT loss, что, однако, хотя и принято в стандартах СКС, не получило практического распространения из-за некоторой громоздкости. Слово loss (потери, в данном случае затухание) подразумевается присутствующим по умолчанию. Термином NEXT может обозначаться как явление (переходная наводка), так и численная характеристика интенсивности этого явления (переходное затухание). Предполагается, что смысл термина должен быть ясен специалисту из контекста.

(Понятие переходного затухания на ближнем и дальнем концах в такой форме не является чем-то новым для кабельной техники. Оно широко применялось для линий городской, зоновой и междугородной связи. При их описании в отечественной технической литературе традиционно использовались обозначения A 0 и A l соответственно.)

Переходное затухание на ближнем конце - самая первая численная характеристика влияния, которая начала нормироваться в СКС. При этом на момент выделения СКС в самостоятельное техническое направление NEXT был единственным актуальным для практики параметром влияния. Дело в том, что в середине 90-х годов скорости передачи в локальных сетях не превышали 100 Мбит/с (в вариантах 10BaseT и 100BaseTX), а для увеличения производительности канала связи (под этим параметром традиционно понималась сумма скоростей передачи в прямом и обратном направлениях) использовался полнодуплексный режим, поэтому передатчик и приемник каждого сетевого интерфейса конструируются в расчете на подключение к различным витым парам одного кабеля, которые могли бы функционировать одновременно.

Модель работы простейшего сетевого интерфейса Ethernet в полнодуплексном режиме (в контексте оценки качественных показателей канала связи) изображена на Рисунке 2, а. При такой схеме организации связи информационный сигнал, источником которого является передатчик на дальнем конце, приходит на ближний конец ослабленным после передачи по витой паре. На входе приемника он подвергается воздействию мощной переходной помехи от работающего на этом же конце передатчика. В этом случае для нахождения отношения сигнал/шум, то есть для определения качества передачи информации, достаточно ввести нормы и контролировать выполнение для следующего параметра:

NEXT = P c – max P ппб,

где Р с - уровень сигнала, а Р ппб - уровень переходной помехи, создаваемой этим сигналом на ближнем конце.

Величина max P ппб взята из соображений гарантированного обеспечения определенного отношения сигнал/шум в общем случае. Такой подход удобен тем, что при разработке сетевых интерфейсов пары горизонтального кабеля можно комбинировать произвольным образом.

Увеличить пропускную способность линии связи на основе симметричного тракта можно за счет одновременной передачи информации по двум или более парам одного кабеля. Данный прием известен как схема параллельной передачи и широко применяется на скоростях 1 Гбит/с и выше, но дополнительно к переходным помехам на ближнем конце необходимо учитывать также помехи на дальнем конце (см. Рисунок 2, б). Для расчета данной помехи следует знать величину переходного затухания на дальнем конце:

FEXT = P c – max P ппд,

где P ппд - уровень переходной помехи на дальнем конце. Максимальное значение P ппд берется по тем же соображениям, что и при нормировании помехи на ближнем конце.

Отдельно укажем, что модель влияния (см. Рисунок 2, б) не имеет самостоятельного практического значения из-за отсутствия сетевых интерфейсов, где использовалась бы двухканальная схема параллельной передачи. В принципе ей соответствовал двухпарный гигабитный Ethernet, однако оборудование этого типа не получило распространения, хотя и стандартизировано IEEE 802.3.

Величины NEXT и FEXT представляют собой измеряемые параметры. Под этим понимается то, что при определении их фактического значения измерительный прибор подает на тестируемый объект испытательный сигнал и фиксирует отклик, поступающий в его приемную часть. После обработки данного отклика и его сравнения с исходным воздействием находится фактическое значение переходного затухания на ближнем и дальнем концах.

ЧАСТОТНАЯ ЗАВИСИМОСТЬ NEXT И FEXT

Влияющая пара и пара, подверженная влиянию, находятся под общей защитной оболочкой кабеля, то есть располагаются параллельно. При анализе переходных воздействий подобную структуру можно рассматривать как конденсатор, функции обкладок которого выполняют влияющие друг на друга пары. Даже из такой простейшей модели следует, что с ростом частоты переходное затухание должно падать. При этом будет резонно, по крайней мере в первом приближении, считать линейной зависимость переходного затухания от частоты (в логарифмическом масштабе).

В нормативном разделе стандарта ISO/IEC 11801:2002 приводятся математические модели стационарных линий и трактов. Анализ их структуры показывает, что для кабельных изделий СКС используется следующее аппроксимирующее выражение частотной характеристики NEXT:

NEXT(f) = NEXT(1) – 15lg(f),

где: NEXT(1) - минимально допустимое переходное затухание на ближнем конце на частоте 1 МГц, которое для кабелей Категорий 5е, 6 и 7 принимается равным 63,5, 74,3 и 102,4 дБ соответственно, f, МГц - частота сигнала.

Из приведенного соотношения следует, что крутизна изменения минимально допустимой величины NEXT принимается постоянной во всем частотном диапазоне и равной 15 дБ на декаду.

Иногда указываемая в каталогах производителей размерность переходного затухания на ближнем конце в дБ/100 м должна трактоваться как величина NEXT, измеряемая при длине кабеля 100 м. Какие-либо пересчеты на меньшую длину недопустимы. Иначе говоря, если, например, на длине 100 м значение NEXT равно 40 дБ, то и при длине 50 м оно не поменяется и будет составлять те же 40 дБ.

Практически идентичное соотношение справедливо и для частотной характеристики переходного затухания разъемных соединителей. Начальное значение NEXT на частоте 1 МГц для разъемов Категорий 5е, 6 и 7 устанавливается стандартом ISO/IEC 11801:2002 равным 83, 94 и 102,4 дБ соответственно. Однако скорость падения NEXT при увеличении частоты зависит от категории разъема. Для изделий Категорий 5е и 6 она составляет 20 дБ на декаду, а для разъемов Категории 7 равна 15 дБ на декаду (аналогично кабелям).

Составляющие одной частоты переходной помехи на ближнем конце, которые создаются отдельными участками влияющей витой пары, суммируются с различными фазами. На качественном уровне этот эффект объясняется тем, что к моменту поступления на вход приемника указанные составляющие проходят различный путь. Поэтому реальный график частотной зависимости величины NEXT имеет вид кривой с падающей медианой и с резкими, но регулярными перепадами значений переходного затухания на близких частотах.

Стандарты нормируют только минимальную величину параметра NEXT. Кабель (а также стационарная линия и тракт, построенные на его основе) считается соответствующим требованиям стандарта, если во всем рабочем частотном диапазоне фактически достигаемая величина NEXT не опускается ниже того значения, которое определено нормами. Таким образом, из соображений преемственности принимается стратегия точечного, а не интегрального нормирования.

Переходная помеха на дальнем конце обычно меньше, чем переходная помеха на ближнем конце. Однако, в отличие от помех на ближнем конце, эти помеховые составляющие к моменту поступления на приемник проходят практически одинаковый путь. С учетом этой особенности они достаточно часто суммируются синфазно или с небольшой разностью фаз, что может дополнительно увеличивать их возмущающее воздействие на информационный сигнал.

ЗАВИСИМОСТЬ NEXT И FEXT ОТ ПРОТЯЖЕННОСТИ ЛИНИИ

Переходное затухание на ближнем конце с увеличением длины линии L сначала довольно быстро уменьшается, а затем асимптотически стремится к некоторому постоянному значению (Рисунок 3). Этот эффект объясняется тем, что, начиная с определенной величины L, токи помех с участков, отдаленных от точки подключения генератора (например, участки III и IV на Рисунке 2, а), приходят на ближний конец настолько ослабленными, что практически не увеличивают взаимного влияния между цепями.

Из рассмотренного механизма формирования помехи на ближнем конце следует, что значения NEXT для двух концов одной пары могут существенно различаться. Поэтому фактическая величина NEXT должна определяться отдельно для каждого конца стационарной линии, тракта или кабеля.

Это сказывается на конструкции приборов для полевого тестирования. Так, они реализуются в виде двух очень похожих полукомплектов или блоков, каждый из которых снабжается управляющим высокопроизводительным контроллером, что позволяет не менять местами базовый и удаленный блоки в процессе работы и по меньшей мере вдвое ускорить процесс тестирования. В серийной измерительной аппаратуре основной блок отличается от удаленного только наличием полномасштабного дисплея и органов управления.

График изменения переходного затухания на дальнем конце, зависящего от длины линии, носит экстремальный характер. Вначале, пока длина линейного кабеля мала, возрастание ее протяженности ведет к увеличению мощности помехи. По мере увеличения длины помеховые составляющие затухают сильнее, и FEXT постепенно, но при этом достаточно быстро возрастает. Данная особенность затрудняет контроль выполнения норм по этому параметру.

СУММАРНОЕ ПЕРЕХОДНОЕ ЗАТУХАНИЕ

К концу 90-х годов для описания функционирования симметричных кабельных линий и трактов СКС возникла потребность в моделях, которые в большей степени соответствовали бы реальным схемам использования ресурсов СКС перспективными видами аппаратуры, что было обусловлено двумя факторами. Во-первых, при разработке сетевого оборудования четко обозначилась тенденция использования одновременно нескольких пар для передачи информации в полнодуплексном режиме. Во-вторых, при построении СКС открытых офисов начали широко применяться многопарные кабели, характеристики которых позволяли выполнять передачу сигналов сразу нескольких сетевых интерфейсов.

Переход к новым схемам реализации информационного обмена привел к тому, что нормирования только межпарного переходного затухания оказалось недостаточно. Это обусловлено тем, что в момент поступления полезной информации на приемник воздействуют помехи со стороны нескольких источников, обладающих одинаковой или, по крайней мере, сопоставимой мощностью. Для учета этого обстоятельства используется более сложная схема, которая фиксирует переходное затухание по модели так называемой суммарной мощности (Power Sum).

В случае четырехпарного кабеля схема для определения суммарной переходной помехи на ближнем конце предстает в виде, изображенном на Рисунке 4, а (помехи от всех пар воздействуют на одну). В соответствии с этой схемой суммарное переходное затухание на ближнем конце составляет:

где NEXT i - величина NEXT для i-й влияющей пары, а n - количество пар в кабеле.

Значение суммарного переходного затухания на дальнем конце определяется аналогично:

Величины PS-NEXT и PS-FEXT зависят от частоты и протяженности линии таким же образом, как NEXT и FEXT соответственно.

В отличие от параметра NEXT величина PS-NEXT при тестировании не измеряется из-за сложностей формирования адекватного испытательного сигнала. Она определяется расчетным путем на основании измерений NEXTi для отдельных пар. Выполнение данной операции не представляет каких-либо проблем благодаря высокой производительности контроллеров современного измерительного оборудования для полевого тестирования.

Параметр PS-FEXT также определяется расчетным путем. Однако как и его «межпарный» прототип он существенно зависит от длины линии и без связи с другими характеристиками малоинформативен. Поэтому стандарты его не нормируют. Тем не менее величина PS-FEXT является одной из составных частей параметра защищенности на дальнем конце, соблюдение требований стандартов для которого является необходимым условием сертификации кабельной системы перед ее передачей в текущую эксплуатацию.

Из-за неодинакового расстояния между парами, различного шага скрутки, особенностей раскладки проводов по контактам разъема и других параметров разность между величинами NEXT и PS-NEXT конструкций специальной разработки оказывается равной примерно 3 дБ, а не 4,8 дБ (см. Таблицу 1). Из приведенных в ней данных следует, что если величина PS-NEXT не приводится в паспортных данных кабеля, то для ее оценки в первом приближении можно воспользоваться довольно точным эмпирическим соотношением:

PS-NEXT = NEXT – 3 дБ.

Проблема обеспечения требуемой величины суммарного переходного затухания возникла сначала в многопарных кабелях при их подключении к нескольким источникам сигналов. Требования к многопарным конструкциям содержались в нормативной части редакций основных стандартов СКС от 1995 года. Сложность их соблюдения привела к тому, что в течение длительного времени на рынке предлагались две разновидности многопарных кабелей: обычные и с сертификацией по Power Sum. Последние обладали улучшенными характеристиками, но стоили намного дороже.

В настоящее время величины суммарного переходного затухания четырехпарных кабелей ненамного отличаются от аналогичных параметров различных многопарных кабелей. Это обусловлено конструкцией последних, где в большинстве случаев применяются пятипарные связки, то есть по количеству пар они мало отличаются от горизонтального кабеля.

Влияние пар соседних пучков многопарных изделий в кабельных трактах Категории не выше D пренебрежимо мало из-за относительно большого значения произведения L λ - расстояния между ними на длину волны передаваемого сигнала. При переходе к трактам Класса E в традиционных многопарных кабелях, в которых все цепи передачи находятся под общей оболочкой, пренебрегать «межпучковыми» влияниями уже нельзя из-за уменьшения λ (роста частоты передаваемого сигнала). Для устранения этого недостатка конструкции Категории 6 с количеством пар свыше четырех реализуются по так называемой многоэлементной схеме. Последняя представляет собой фабричную сборку из нескольких четырехпарных кабелей, скрепленных общей оболочкой (например, так делает компания Corning Cable Systems) или обмоткой из фиксирующей ленточки (решение компании Brand Rex). Такое исполнение не требует радикальной модернизации технологического процесса на производстве и гарантирует большой пространственный разнос пар, относящихся к разным четверкам, благодаря чему величина произведения L λ оказывается достаточной для эффективного подавления межпучковых воздействий.

МЕЖКАБЕЛЬНОЕ И МЕЖЭЛЕМЕНТНОЕ ПЕРЕХОДНОЕ ЗАТУХАНИЕ

Горизонтальные кабели на большей или меньшей части своей длины прокладываются параллельно по одному кабельному каналу с весьма узким поперечным сечением. Это приводит к тому, что кабели плотно прилегают друг к другу. В данной ситуации может понадобиться контроль воздействия всех окружающих кабелей на один, количественной мерой которого является стороннее или межкабельное переходное затухание. В данном случае, аналогично внутрикабельному переходному затуханию, различают переходное затухание на ближнем (Alien NEXT) и дальнем (Alien FEXT) концах, а также их межпарные и суммарные разновидности.

Из механизма возникновения наводок ясно, что основную долю мощности межкабельной помехи в конкретно взятой паре вносят пары такого же цвета других кабелей. Это обусловлено тем, что механизм подавления за счет соответствующего подбора шагов скрутки для таких пар не работает. Выбор названия помехи (от англ. Alien - чужой) дополнительно подчеркивает крайнюю опасность таких наводок для неэкранированных кабелей и линий, изготовленных на их основе.

Из-за особенностей самого процесса возникновения помех их уровень на дальнем конце кабеля может существенно превышать уровень на ближнем конце. Одновременно механизм формирования межкабельной переходной помехи означает изменение механизма формирования суммарной помехи. Поскольку расстояния между источником помехи и парой, подверженной влиянию, значительно больше, чем в случае сердечника, помеху создают не все пары соседних кабелей. При рассмотрении суммарной межкабельной переходной помехи следует учитывать только наводки от пар, которые имеют равный шаг скрутки, то есть «одноцветных» пар.

Соответственно, при определении межкабельной переходной помехи рассматриваются только те кабельные изделия, которые расположены в непосредственной близости от кабеля, подверженного влиянию. Ввиду однотипности кабелей, для анализа межкабельных влияний и построения схем измерения ее фактических значений зачастую применяется схема «шесть вокруг одного» (Рисунок 5).

Проведенные экспериментальные исследования показывают, что необходимость учета переходных помех, создаваемых соседними кабелями, возникает только на частотах свыше 250 МГц. Фактически такие помехи сказываются в трактах Класса не ниже EA, причем когда для их реализации используется неэкранированная элементная база Категории 6А. В отличие от внутрикабельной переходной помехи межкабельные шумовые составляющие не могут быть устранены методами аппаратурной обработки в цифровом сигнальном процессоре DSP приемника сетевого интерфейса. Это привело к увеличению спроса на кабели со структурой F/UTP. Благодаря пленочному исполнению экрана данные изделия чрезвычайно схожи по массогабаритным и эксплуатационным параметрам, а также по удобству монтажа с наиболее широко распространенными полностью неэкранированными конструкциями. Кроме того, они позволяют заметно увеличить эффективность подавления межкабельной переходной помехи.

ЗАКЛЮЧЕНИЕ

  1. В симметричных кабельных трактах СКС на информационный сигнал воздействует множество наводок со стороны соседних цепей. В результате возникает необходимость нормирования и контроля различных вариантов переходного затухания, которое является численной мерой интенсивности этих наводок. Применение понятия переходного затухания позволяет простыми средствами и с высокой точностью оценивать работоспособность современных сетевых интерфейсов, обеспечивающих скорость передачи информации вплоть до 10 Гбит/с и выше.
  2. Различный характер зависимости мощности отдельных видов переходной помехи от частоты и протяженности линии не позволяет ввести единый интегральный параметр, поэтому стандарты учитывают и нормируют каждую помеховую составляющую отдельно.
  3. Параметры влияния на ближнем конце нормируются стандартами непосредственно, а на дальнем конце регламентируются косвенно - путем введения норм по защищенности.
  4. По мере увеличения скорости передачи информации по симметричным кабельным трактам СКС количество учитываемых разновидностей наводок и, соответственно, видов переходного затухания неуклонно возрастает.

Андрей Семенов - директор центра развития «АйТи-СКС». С ним можно связаться по адресу: [email protected] .



Определение величины токов влияния на ближний и дальний концы кабельной линии

Кабельные линии монтируют из отдельных отрезков кабеля (строительных длин), поставляемых заводами со скрученными (скре­щенными) жилами цепей, и поэтому фазы токов влияний, поступа­ющих к ближнему и дальнему концам кабельной линии, неизвест­ны. При определении полного тока влияний применяют квадратич­ный закон сложения токов отдельных строительных длин. Рассматриваемая ситуация отличается от случая влияний между цепями воздушных линий, где фазы токов поступающие с отдельных участков взаимовлияющих цепей на ближний (дальний) конец, известны, т.к. схемы скрещивания цепей монтируются в процессе строительства воздушной линии.

Допустим, что имеется кабельная линия из n отрезков кабеля длиной S с цепями, имеющими одинаковые параметры. Для опреде­ления переходного затухания на ближнем конце предположим, что электромагнитные связи между цепями постоянны по всей длине и ток влияния первой строительной длины , тогда ток влияния со второй строительной длины будет и т. д., и с последней строительной длины .

Полный ток влияния на ближнем конце

.

В этом случае отношение токов

Приравняв , для переходного затухания получим

где - переходное затухание на ближнем конце строительной длины, оп­ределяемое обычно измерениями.

Все токи влияния на дальний конец проходят через отдельные строительные длины и пути их от начала влияющей цепи до конца цепи, подверженной влиянию, одинаковы. По­этому при суммировании их по квадратичному закону все слагае­мые под квадратным корнем получаются одинаковыми, и полный ток

Переходя к отношению токов и логарифмируя, получим

где - переходное затухание на дальнем конце строительной длины, определяемое измерениями, .

Защищенность на дальнем конце

Строительные длины кабелей в процессе монтажных работ сое­диняют между собой; они образуют кабельную линию.

Симметрирование кабелей

Кабельные цепи в строительных длинах одного и того же типа кабеля всегда имеют различные электрические характеристики (в пределах, допустимых техническими условиями), и от того, как они будут соединены, зависит защищенность их от взаимных влияний и влияний внешних источников. Поэтому при выполнении монтажных работ с симметричными кабелями проводят симметрирование - комплекс мероприятий, направленных на уменьшение влияний.

Способы симметрирования . Взаимные влияния возникают в результате наличия между цепями электромагнитных связей. При этом в низкочастотных (до 4 кГц) кабелях преобладают электрические связи, а в высокочастотных - электромагнитные комплексные связи. Исходя из этого в НЧ кабелях достаточно проводить симметрирование емкостных связей; в ВЧ кабелях необходимо симметрировать все составляющие (активные и реактивные) электрических и магнитных связей. Для симметрирования НЧ кабелей применяют метод скрещивания жил и конденсаторный метод. Симметрирование ВЧ кабелей производят методами скрещивания жил и концентрированного симметрирования контурами противосвязи.



Сущность симметрирования скрещиванием жил заключается в компенсации электромагнитных связей между цепями на одном участке кабельной линии связями другого участка. Компенсация объясняется тем, что при скрещивании связи изменяют свой знак.

При симметрировании конденсаторным методом последние устанавливают в промежуточной муфте, соединяющей два участка кабельной линии, и включают между жилами цепей. Емкость их выбирают такой, чтобы сумма частичных емкостей С 13 +С 24 (рис.1) была близка к сумме С 14 +С 23 . В случае равенства сумм достигается равновесие электрического моста, и емкостная связь равна нулю.

Концентрированное симметрирование контурами противосвязи заключается в том, что токи помех, вызываемые электромагнитными связями между цепями, компенсируются токами влияния противоположной фазы, создаваемыми с помощью контуров, включаемых между жилами взаимовлияющих цепей.

На рис.2 приведена схема включения контура противосвязи F п, а естественная распределенная связь показана в виде эквивалентной связи F. Поскольку токи влияния I и I п на дальний конец различных участков сближения цепей имеют одинаковую фазу, то для компенсации этих токов достаточно с помощью контура создать такой же ток, но противоположной фазы. При практическом симметрировании сложность заключается в реализации требуемой частотной зависимости контура противосвязи, воспроизводящего частотную зависимость естественной электромагнитной связи, которая носит комплексный характер, и в необходимости учета эффекта перестановки.



Выполнение симметрирования значительно упрощается при использовании комплекта приборов для визуального измерения комплексных связей по активной и реактивной составляющим, а также переходных затуханий по модулю и фазе вместо приборов для измерения частотных характеристик переходного затухания на ближнем конце и защищенности на дальнем конце.

На ближний конец цепи токи влияния с различных участков приходят с разными фазами, и компенсировать их токами противосвязи сложно, так как контуры противосвязи необходимо подключать в местах воздействия электромагнитной связи. Учитывая, что в действительности электромагнитные связи имеют распределенный характер, то для получения компенсации нужно между цепями подключать большое число контуров противосвязи, что практически неприемлемо. Поэтому концентрированное симметрирование контурами противосвязи применяют только для уменьшения влияния на дальний конец. Влияние на ближний конец уменьшают скрещиванием.

Методика симметрирования высокочастотных и низкочастотных цепей различна. Высокочастотные цепи имеют большое затухание на высоких частотах, и токи влияния на ближний конец участков, расположенных на расстоянии, соответствующем затуханию 10-11 дБ (на верхних частотах передаваемого спектра), незначительны. Это позволяет производить симметрирование на всем усилительном участке. Низкочастотные цепи имеют значительно меньшее затухание, и, снижая влияние на дальний конец, можно увеличить влияние на ближний конец и наоборот. Низкочастотные кабели симметрируют небольшими участками, называемыми шагами симметрирования: участки кабельной линии, состоящие из нескольких строительных длин общей протяженностью до 4 км. Обычно длину шага симметрирования низкочастотных кабелей принимают равной 2 км.

В железнодорожных кабелях дальней связи имеются высоко- и низкочастотные четверки. При симметрировании таких кабелей приходится применять оба метода.

3. Симметрирование низкочастотных цепей . В кабелях со звездной скруткой жил наибольшие влияния имеют место между цепями внутри четверок. Влияние между цепями смежных четверок меньше из-за различных шагов их скрутки. Однако при большой длине кабеля это влияние может превысить допустимое. Влияние уменьшают смешиванием четверок, которое заключается в том, что на протяжении кабельной линии четверки меняются местами, то удаляясь друг от друга, то сближаясь. В железнодорожных кабелях применяют преимущественно симметрирование внутри четверок. Перед началом симметрирования цепи к ней должны быть подключены все ответвления от магистрального кабеля к устройствам автоматики и связи.

Низкочастотные цепи симметричных кабелей в отличие от высокочастотных имеют более высокие значения волнового сопротивления. Поэтому при передаче по этим цепям сигналов одинаковой мощности напряжение в низкочастотных цепях окажется больше, а ток меньше, чем в высокочастотных и, следовательно, влияния между низкочастотными цепями в большей степени обусловливаются электрическими связями, чем магнитными. Низкочастотные цепи магистральных железнодорожных кабелей необходимо симметрировать в тех же муфтах, что и высокочастотные. При совпадении мест расположения усилительных пунктов НЧ и ВЧ цепей низкочастотные цепи следует симметрировать одновременно с высокочастотными, а при несовпадении сначала симметрируют высокочастотные цепи, а затем низкочастотные.

Для симметрирования четверок сначала измеряют емкостные связи в соединяемых строительных длинах кабеля: k 1 =(С 13 +С 24)-(С 14 +С 23) между основными цепями в четверке; k 2 =(C 13 +C 14)-(C 23 +C 24) между первой основной и искусственной; k 3 =(C 13 +C 23)-(C 14 +C 24) между второй основной и искусственной. Измеряют также емкостную асимметрию е 1 =(C 10 -C 20) первой пары четверки; е 2 =(C 30 -C 40) второй пары четверки; е 3 =(C 10 +C 20)-(C 30 +C 40) искусственной цепи, где C 13 , C 23 , C 14 , C 24 - емкости между жилами цепей; C 10 , C 20 , C 30 , C 40 - емкости между жилами и землей (оболочкой) (см. рис.1).

Затем симметрирование выполняют в три этапа: внутри шагов симметрирования; при соединении шагов и на смонтированном усилительном участке.

Симметрирование внутри шагов (первый этап) можно выполнять в одной, трех и семи точках, расположенных на одинаковом расстоянии друг от друга и от концов шага симметрирования (рис.3). Муфты, в которых выполняют симметрирование скрещиванием, называются симметрирующими. Муфты, в которых симметрирование выполняют скрещиванием и конденсаторами, называются конденсаторными. Муфты, в которых симметрирование не выполняют и жилы соединяют напрямую, называют прямыми муфтами и обозначают кружком (см. рис.3).

При одноточечной схеме сначала монтируют прямые муфты, а затем конденсаторную (К). В случае трехточечной схемы вначале монтируют прямые муфты, затем симметрирующие и только потом конденсаторные. При симметрировании по семиточечной схеме сначала монтируют симметрирующие муфты А, затем Б и последней - конденсаторную муфту К.

Схемы скрещивания жил цепей при соединении четверок в симметрирующих муфтах выбирают по данным измерений емкостных связей и асимметрии. Например, если на одном участке кабельной линии емкостная связь между цепями одной из четверок пФ, а на другом участке емкостная связь между цепями также внутри одной четверки пФ, то при соединении жил обеих четверок без скрещивания результирующая связь пФ. Если жилы одной из цепей скрестить в соединительной муфте, то результирующая связь k 1 =350-300=50 пФ. В случае скрещивания обеих цепей значение результирующей связи не изменится (650 пФ).

Когда имеется искусственная цепь, возможны 8 вариантов скрещивания. Эти комбинации скрещиваний и соответствующие им знаки емкостных связей и асимметрии приведены в табл.1.

Штрихами у букв обозначают участки кабеля. Для удобства введены условные обозначения, называемые операторами. Крест соответствует скрещиванию, а точки - соединению напрямую (цвет в цвет).

При выполнении симметрирования скрещиванием пробуют все возможные схемы и выбирают ту, при которой связи и асимметрия имеют наименьшие значения. Когда нельзя одновременно уменьшить связи и асимметрию, оператор выбирают исходя из задачи уменьшения связей.

Таблица 1

Если скрещиванием не удалось снизить связи и асимметрию до допустимых значений (k 1 , k 2 , k 3 ≤ 20 пФ; е 1 , е 2 ≤ 100 пФ), то применяют симметрирование конденсаторами.

Емкости этих конденсаторов выбирают так. Допустим, измерениями установлено, что k 1 = - 30 пФ. Это значит, что в уравнении для k 1 сумма емкостей (С 13 +С 24) меньше (С 14 +С 23) на 30 пФ. Следовательно, для того чтобы получить значение k 1 = 0 и не изменить k 2 и k 3 , необходимо включить дополнительные конденсаторы емкостью 15 пФ между жилами 1-3 и 2-4 четверки. Аналогично можно уменьшить связи k 2 и k 3 . Для снижения асимметрии конденсаторы подбирают так же, но включают их между соответствующими жилами и оболочкой (землей).

При соединении шагов между собой (второй этап) симметрирование выполняют способом скрещивания по результатам измерений переходного затухания между цепями на частоте 800 Гц. Выбирают операторы, которые дают наибольшее переходное затухание. Шаги наращивают последовательно, начиная от концов усилительного участка к его середине по измерениям переходного затухания на ближнем и дальнем конце, добиваясь наибольшего их значения. Одновременно выравнивают рабочие емкости и сопротивления жил основных цепей в шаге симметрирования так, чтобы асимметрия не превышала 0,1 Ом.

На участках, где возможны большие внешние влияния, на втором этапе симметрирования проводят дополнительные мероприятия по снижению коэффициента чувствительности цепей к помехам.

Для этого при соединении между собой шагов симметрирования по направлению от конца усилительного участка к его середине по результатам измерения переходного затухания на ближнем конце и напряжений U 1 и U 2 в соединяемых четверках кабеля (рис.4).

Измерительный генератор G включают в конце наращиваемого шага симметрирования S (точка С). На головной станции (точка А) проводят серию измерений на зажимах нагрузочных сопротивлений кабельных цепей в четверке Каждая группа из двух измерений относится к определенному оператору скрещивания жил четверки в монтируемой муфте. Наименьшему измеренному напряжению будет соответствовать минимальный коэффициент чувствительности цепи.

Приемлемый оператор (схема соединения жил в точке В) выбирают компромиссно на основании результатов сравнения значений переходных затуханий между цепями в кабельной четверке и измеренных напряжений U 1 и U 2 . При этом переходные затухания не должны быть менее допустимых, а измеренные напряжения должны быть наименьшими.

На третьем этапе симметрирование на смонтированном усилительном участке выполняют в муфте, расположенной примерно в середине усилительного участка. В этой муфте соединяют жилы в четверке по результатам измерения защищенности на дальнем конце и напряжений U 1 и U 2 , выбирают компромиссно самый выгодный оператор. В четверках, не удовлетворяющих нормам переходного затухания и защищенности, включают компенсирующие контуры.

4. Симметрирование высокочастотных цепей .

Для уменьшения трудоемкости и повышения эффективности симметрирования на стадии подготовительных работ проводят группирование строительных длин кабеля по средним значениям рабочей емкости цепей и по величине переходного затухания на ближнем конце. В этом случае из паспортных данных на строительные длины выбирают минимальные значения переходного затухания на ближнем конце между всеми цепями и составляют ведомость укладки этих кабелей на участке. На концах усилительного участка прокладывают кабели с наибольшими значениями переходного затухания, что позволяет исключить или значительно облегчить процесс симметрирования на ближний конец цепи. Для высокочастотных цепей симметрирование выполняют в пределах усилительных участков систем передачи с частотным разделением каналов (цифровые системы обладают большей помехозащищенностью и не требуют симметрирования ВЧ цепей). Симметрирование на дальнем конце усилительного участка выполняют в два этапа: на первом - систематическое скрещивание первой цепи четверки при соединении строительных длин кабеля (оператор соединения в муфте жил кабеля х..); на втором - скрещивание цепей в одной, двух или трех точках (муфтах) (рис.5) с подбором опытным путем наилучшего сочетания операторов скрещивания по результатам измерений защищенности цепей на дальнем конце усилительного участка. Эффективность двухэтапного скрещивания ВЧ цепей зависит от значений так называемого параметра симметрируемости внутричетверочных комбинаций влияния для строительной длины кабеля. Этот параметр определяется минимальным значением A l , которого можно достигнуть при компенсации непосредственных влияний. Эффективность двухэтапного скрещивания также зависит от диапазона частот и длины усилительного участка.

Под наилучшим сочетанием операторов скрещивания при трехточечной или двухточечной схемах симметрирования понимают такое, при котором достигается требуемая норма по защищенности A з l во всем диапазоне частот. Если этого достигнуть невозможно, то выбранные операторы скрещивания должны в первую очередь уничтожить эффект перестановки для возможности использования симметрирования с применением контуров противосвязи. В последнем случае симметрирование ВЧ цепей получается трехэтапным.

Кроме рассмотренных методов уменьшения взаимных влияний между ВЧ цепями, в отдельных случаях могут потребоваться и другие (дополнительные) меры, например по уменьшению влияний с выхода промежуточного усилителя (регенератора) на его вход в комбинированных железнодорожных кабелях связи и компенсационный метод ослабления взаимных влияний на участках меджу соседними обслуживаемыми усилительными пунктами (ОУП-ОУП). Этот метод служит для обеспечения помехозащищенности от взаимных влияний при организации связи по кабелю, предназначенному согласно техническим условиям для работы в более узком диапазоне частот, чем этого требует применяемая аппаратура.

Влияние с выхода промежуточного усилителя на его вход необходимо учитывать на кабельных линиях при наличии низкочастотных цепей, проходящих без разрыва через высокочастотный усилительный пункт (УП). В этом случае имеют место указанные влияния через третьи низкочастотные цепи (рис.6). Устранение этих влияний может быть обеспечено благодаря переходу ВЧ цепей из одного кабеля в другой в каждом усилительном пункте (рис.7). Влияния с выхода на вход ВЧ усилителей через третьи двухпроводные цепи могут быть уменьшены включением в последние низкочастотных фильтров.

Рис. 6 Рис. 7

Для уменьшения этих влияний на воздушных линиях вводы в усилительные пункты устраивают в разных кабелях. Для уменьшения влияния через земляной тракт во все цепи на входе и выходе в усилительные пункты включают запирающие катушки (ЗК) (рис.8). Каждую полуобмотку катушки ЗК включают в один из проводов двухпроводной цепи. В результате магнитные поля токов земляного тракта (имеющих одинаковое направление) складываются, что увеличивает индуктивное сопротивление цепи «провод-земля». Магнитные поля токов, имеющих разные направления в проводах двухпроводной цепи, взаимно компенсируются, и затухание, вносимое запирающей катушкой для передаваемых сигналов, невелико. При вводе в оконечные пункты запирающие катушки включаются только в уплотненные цепи.

Компенсационный метод ослабления взаимных влияний на участках ОУП-ОУП. Линейные тракты железнодорожных магистральных кабельных линий находятся в более тяжелых условиях по сравнению с аналогичными линиями Министерства связи. Это объясняется наличием третьих неуплотненных цепей, большим числом кабелей с бумажной изоляцией и алюминиевой оболочкой, трудно симметрируемых в широком диапазоне частот, большим числом отпаев от магистрального кабеля. Поэтому применительно к кабельным магистралям железнодорожного транспорта этот метод ослабления взаимных влияний наиболее применим.

Компенсационный метод имеет большие возможности ослабления взаимных влияний по сравнению с методами симметрирования. Это объясняется, во-первых, тем, что он учитывает наличие эффекта перестановки, который возникает из-за различия постоянных распространения взаимовлияющих цепей (эффект перестановки проявляется в том, что комплексные связи для комбинаций влияния первой цепи на вторую и наоборот различны); во-вторых, применением более широкой элементной базы (кроме резисторов и конденсаторов, применяемых как и в методе симметрирования контурами противосвязи в пределах усилительного участка, используют регулируемые линии задержки и катушки индуктивности, на базе которых создают полосовые фильтры с требуемыми характеристиками). Недостатком рассматриваемого метода является то, что он может быть применен только на магистрали с полностью настроенными линейными трактами, и при его использовании невозможен контроль качества строительства по важнейшему параметру - переходному затуханию и защищенности.

Взаимные влияния на участках ОУП-ОУП подавляются включением в приемном ОУПе контура противосвязи (рис.9). Схему противосвязи подбирают так, чтобы ток компенсации I к был одинаков по модулю и противоположен по фазе результирующему току помех на входе данного ОУП где - ток помех, наведенный в пределах v -го усилительного участка. Для обеспечения независимости подавления взаимных помех между различными комбинациями влияний (учет эффекта перестановки) используют однонаправленное устройство, которое устанавливают на входе контура противосвязи.

Подбор элементов контуров противосвязи возможен двумя основными способами - расчетным и аппаратурно-итерационным. Последний применяют на железнодорожных кабельных магистралях, так как он более нагляден и не требует применения специальной аппаратуры. Аппаратурно-итерационный метод синтеза схем противосвязей состоит из трех этапов: первый - измерение годографа комплексных связей на участке ОУП-ОУП, второй - подбор элементов контуров противосвязи на основании данных, полученных на первом этапе; третий - измерение разностного годографа после подключения контура противосвязи между взаимовлияющими цепями и уточнение элементов последнего. Подбор элементов контуров противосвязей заключается в выборе необходимой типовой схемы противосвязи или комбинации их включения. Среднее значение эффективности ослабления взаимных влияний на участках ОУП-ОУП составляет 10-12 дБ.

Контрольные вопросы

1.Поясните физический смысл симметрирования с применением контуров противосвязи и метода скрещивания.

2.В чем состоят особенности симметрирования низкочастотных (высокочастотных) кабелей связи?

3.В чем заключается особенность симметрирования низкочастотных цепей при воздействии внешних влияний?

4.Поясните преимущества и недостатки компенсационного метода ослабления взаимных влияний на участках ОУП-ОУП.

5.Поясните назначение и принцип действия запирающих катушек.

Необходимость непрерывного повышения объема и скорости передачи информации заставляет совершенствовать качественные показатели кабельных трактов. Однако возможности снижения затухания горизонтальных кабелей уже практически исчерпаны и сохраняются только для ЦОДов с их небольшой протяженностью линий.

Естественное стремление обеспечить нормальное быстродействие информационно-телекоммуникационной системы (ИТС) стимулирует внедрение каналов связи с постоянно увеличивающейся пропускной способностью.

Тенденция к переходу на все более быстродействующую технику высоких категорий четко прослеживается на всех уровнях информационной кабельной системы. Не стала исключением ее горизонтальная подсистема, которая в подавляющем большинстве случаев реализуется на электропроводной симметричной элементной базе. Стандартные симметричные кабельные тракты СКС отличаются высокой шенноновской пропускной способностью в сочетании с относительно небольшой шириной полосы пропускания. Необходимость максимально полно использовать потенциальные возможности этой направляющей системы вынуждает разработчика сетевых интерфейсов задействовать сложные многопозиционные линейные сигналы, требовательные к качественным показателям канала связи. Малейшее невыполнение норм по этим параметрам приводит к резкому снижению пропускной способности и, соответственно, падению потребительской ценности ИТС в целом, что недопустимо.

Особенности обеспечения качества сигнала в симметричных кабельных СКС

Техника локально-вычислительных сетей (ЛВС) предполагает, что при переходе на аппаратуру следующей по быстродействию ступени темп передачи в подавляющем большинстве случаев увеличивается на порядок. Это является необходимым условием обеспечения значимой экономической выгоды от внедрения более совершенной техники.

Одним из ключевых факторов, определяющих качество передачи информации в любой системе электросвязи, становится отношение сигнала к шуму на входе ее приемника при достаточной ширине полосы пропускания. Превалирующим типом помехи в электропроводных симметричных трактах СКС являются переходные шумы. Мешающие воздействия прочих разновидностей, также в определенных пределах влияющие на качество передачи с точностью, достаточной для выполнения инженерных расчетов, считаются второстепенными. Этому в немалой степени способствует высокая эффективность их подавления самим сетевым интерфейсом при соответствующей обработке смеси сигнала с шумом на приеме и коррекции на передающем конце.

В качестве численной меры величины отношения сигнала к шуму в СКС привлекается параметр ACR - показатель защищенности от переходной помехи. Для учета особенностей схемы передачи и обработки линейного сигнала, используемых в современных высокоскоростных интерфейсах, его дополнительно указывают для обычного, суммарного и межэлементного влияния, а также для ближнего и дальнего концов тракта.

Несложно показать, что защищенность не зависит от уровня выходного сигнала передатчика и численно равна разности между величинами соответствующего переходного и рабочего затухания, т.е. определяется исключительно самим кабельным трактом. Например, используемая еще в первых редакциях стандартов междупарная защищенность на ближнем конце находится как

ACR = NEXT - IL, дБ,

где NEXT - переходное затухание на ближнем конце, IL - рабочее затухание.

Другие разновидности защищенности получаются простой заменой NEXT на величину соответствующего переходного затухания.

Предельная пропускная способность симметричного тракта определяется известным соотношением Шеннона и для современной мультигигабитной техники используется с высокой степенью полноты (примерно на 60% в 10-гигабитных системах). Поэтому при переходе на следующее по быстродействию поколение сетевой аппаратуры величина ACR должна быть увеличена примерно на 10 дБ во всей рабочей полосе частот. Это необходимо для обеспечения вероятности битовой ошибки не свыше 10-12, фиксируемой спецификациями IEEE.

Из приведенного соотношения следует, что наращивать ACR можно двумя на первый взгляд равнозначными способами: уменьшением IL и наращиванием NEXT.

Методы уменьшения рабочего затухания

Для уменьшения величины рабочего затухания разработчик кабеля может использовать несколько основных приемов:

  • увеличить диаметр провода витой пары;
  • использовать для изготовления проводников материалы с меньшим удельным сопротивлением;
  • применить более качественную изоляцию с уменьшенными диэлектрическими потерями;
  • улучшить степень согласования волновых сопротивлений тех отдельных компонентов, последовательное сопротивление которых образует кабельный тракт СКС;
  • увеличить номинальное значение волнового сопротивления свыше 100 Ом.

Увеличение диаметра токопроводящей проволоки витой пары свыше 0,64 мм нецелесообразно из-за опасности возникновения несовместимости с IDC-контактами кабельной части разъемов существующего коммутационного оборудования.

Электротехническая медь, применяемая для изготовления проводов витых пар, практически идеальный материал, уступающий по своим характеристикам только серебру, переход на которое невозможен по экономическим причинам. Кроме того, задействованный в сетевых интерфейсах Ethernet способ передачи в базовой полосе делает технически крайне неэффективным обращение к заметно более экономичным биметаллическим проводам, когда тонкий слой серебра наносится только на поверхность медного провода.

Также в значительной степени исчерпаны резервы улучшения качества изоляции. Современные полимерные материалы, используемые для формирования изолирующих покрытий медных проводников, отличаются предельно малыми потерями. Кроме того, относительная диэлектрическая проницаемость доведена до величины около 1,5. Это достигается в том числе за счет применения пустотелых материалов, получаемых за счет вспенивания или структурирования (рис. 1). Ее дальнейшее существенное снижение проблематично из-за сложностей, связанных с обеспечением механической стабильности самого изоляционного покрытия.

Улучшение степени согласования отдельных компонентов позволяет приблизить рабочее затухание к характеристическому (теоретическому минимуму). Действующие редакции стандартов фиксируют, что для современных компонентов допустимое значение отклонения волнового сопротивления от номинального не превышает ±15% во всем рабочем частотном диапазоне. Следовательно, степень приближения к оптимуму достаточно высока и значимого прогресса в этой области ожидать не приходится.

Увеличение волнового сопротивления как прием, не требующий перехода на иные исходные материалы, позволяет добиться серьезных результатов. Например, применение 120-омных кабелей, которые допускались для использования в СКС стандартами еще в 1995 г., для широко распространенной категории 5е на частоте 100 МГц при 100-метровой протяженности линии дает выигрыш около 5 дБ. Однако при этом из-за потери свойства обратной совместимости резко усложняется эксплуатация кабельной системы. Причина в том, что существенное увеличение уровня отражений в точке с разным волновым сопротивлением не позволяет гарантировать работоспособность гигабитной сетевой аппаратуры и ее более скоростных модификаций при прямом подключении к стационарной линии. Обращение к согласующим элементам в независимости от варианта их исполнения сопряжено с рядом очевидных неудобств эксплуатационного плана и считается крайне нежелательным.

Из изложенного прямо вытекает, что возможности известных методов снижения затухания достаточно ограничены и прорыва в этой области ожидать не приходится. Не случайно спецификации кабельных трактов перспективной категории 8, разрабатываемые в настоящее время, исходят из линейно-логарифмической интерполяции характеристик коэффициентов затухания элементной базы категорий 6а и 7а в ВЧ-части спектра линейного сигнала 40-гигабитных сетевых интерфейсов (рис. 2).

Увеличение переходного затухания

В широкой инженерной практике много способов улучшить характеристики отдельных компонентов и комплексных объектов электропроводной подсистемы СКС по переходным влияниям. Для улучшения внутрикабельного переходного затухания привлекаются следующие:

  • уменьшение шага скрутки витых пар вплоть до величин менее 10 мм;
  • введение в конструкцию сердечника сепаратора витых пар;
  • применение индивидуального для каждой пары экранирования.

Межкабельное переходное затухание для изделий категории 6а и выше наращивается до требуемого значения следующими мерами:

  • искусственное увеличение эффективного внешнего диаметра неэкранированных конструкций с целью снижения межкабельных влияний;
  • использование оплеточных и пленочных экранов (в последнем случае возможно их незаземленное исполнение).

Из приведенного перечня следует, что те изменения, которые положены в основу коррекции конструкции кабеля, носят исключительно механический характер. За счет этого они не требуют радикальной перестройки кабельного производства и внедрения новых материалов.

Как увеличить ACR?

Разумеется, не существует никаких противопоказаний к улучшению качественных показателей электропроводных линий СКС за счет одновременного снижения рабочего затухания и наращивания переходного затухания. В первую очередь это относится к симметричному кабелю как наиболее «шумящему» компоненту тракта.

Из представленных выше данных следует, что достижение требуемой величины ACR за счет наращивания NEXT заметно эффективнее. Проиллюстрируем это положение на численном примере. При переходе с техники категории 5е на категорию 6 шаг скрутки уменьшается на несколько десятков процентов. В конструкцию кабельного сердечника в подавляющем большинстве случаев дополнительно вводится сепаратор. Комплекс этих достаточно простых по современным меркам мероприятий дает возможность добиться увеличения NEXT на отмеченные выше 10 дБ. Кроме того, наращивание NEXT оказывается одинаковым во всем рабочем частотном диапазоне. Вносимые потери IL уменьшаются за счет увеличения диаметра токопроводящей жилы пары с 0,51 до 0,53 мм. Абсолютная величина снижения согласно требованиям стандартов составляет примерно 2 дБ на частоте 100 МГц, т.е. выигрыш по этому параметру от перехода на более качественную элементную базу оказывается достаточно малым. Более того, по мере уменьшения частоты величина выигрыша падает, что еще более снижает эффективность наращивания пропускной способности кабельного тракта этим путем.

За основу дальнейшего анализа можно принять то, что при современном уровне техники практическая необходимость в наращивании гарантированного минимального значения величины ACR в настоящее время существует только в ЦОДе. Наглядным проявлением этой тенденции стали те существенные ужесточения требований к основным параметрам электропроводных трактов, которые зафиксированы в проекте спецификаций техники перспективной категории 8. Фокусной областью применения данного оборудования рассматриваются именно аппаратные залы ЦОДа.

СКС для ЦОДа имеет ряд особенностей, совокупность которых привела к выделению данной разновидности информационных кабельных систем в самостоятельный класс со своей нормативной базой. Наряду с заметно более высокими частотами передаваемых сигналов подобные кабельные системы отличаются заметно меньшими средними длинами организуемых трактов.

В этих условиях технико-экономическая эффективность СКС может быть заметно увеличена за счет отказа от гарантированного обеспечения классической 100-метровой протяженности тракта. Обращение к такому подходу целесообразно еще и потому, что положительно сказывается на энергетической эффективности объекта в целом.

С технической точки зрения уменьшение максимально допустимой протяженности тракта до 30 м выгодно тем, что сопровождается резким падением величины IL. Например, для кабеля типа UC1500 компании Draka на верхней граничной частоте 1500 МГц выигрыш достигает 45 дБ. В данном случае (даже с учетом уменьшения выигрыша по мере снижения частоты) вклад IL в наращивание ACR и через него - шенноновской пропускной способности становится сопоставимым с тем, который достигается улучшением NEXT.

Кроме того, уменьшение общих потерь ценно еще и тем, что приводит к естественному расширению полосы пропускания (верхняя граничная частота тракта определяется по критерию ACR) и заметно упрощает схемотехнические решения при конструировании приемопередатчика сетевого интерфейса. Наиболее значима возможность сохранить в неизменности разрядность линейного сигнала и применять менее сложный приемник. 

Для увеличения пропускной способности симметричного тракта до 10 Гбит/с и выше недостаточно использования внутренних резервов существующей элементной базы и требуется обязательное улучшение ее основных параметров.

Совершенствование качественных показателей симметричного электропроводного тракта достигается преимущественно за счет улучшения характеристик горизонтального кабеля по параметрам влияния.

Резервы по минимизации коэффициента затухания горизонтальных кабелей в рамках ограничений, зафиксированных в существующих нормативных документах, и достигнутого уровня техники исчерпаны практически полностью.

Снижение общего затухания симметричного тракта актуально исключительно для ЦОДа и обеспечивается уменьшением его предельно допустимой протяженности до предела, определяемого энергетической эффективностью аппаратного зала в целом.

Наиболее употребительным параметром, характеризующим взаимные влияния между цепя­ми, является переходное зату­хание. С его помощью удобно оценивать эффективность раз­личных мероприятий, направ­ленных на уменьшение влия­ний, и сравнивать направляю­щие системы с точки зрения помехозащищенности. Однако этот параметр не позволяет однозначно судить о качестве передачи сигнала по цепи связи, по­скольку последнее определяется отношением сигнала к помехе в точке приема, т. е. защищенностью от помех в точке приема. Защищенность зависит от величины помех соседних цепей связи (переходного затухания) и величины ослабления полезного сиг­нала в цепи связи.

Переходное затухание между цепями по аналогии с собственным затуханием цепей принято оценивать величиной, определяемой ло­гарифмом отношения полной мощности сигнала в начале влияющей цепи Р 10 к полной мощности помехи (Р 20 или Р 2 l ) в цепи, подвержен­ной влиянию (рис. 3.12)

на ближнем конце:

, (3.15)

на дальнем конце:

. (3.16)

Переходное затухание может быть выражено не только через мощности, но и через токи (напряжения). Так как то

Значения токов определяют по формулам (3.10) - (3.14). Если отношение токов I 10 /I 20 обозначить через B 0 , а I 10 /I 2 l - через В l , то формулы переходного затухания примут вид:

(3.19)

(3.20)

(3.21)

(3.22)

Защищенность А з - это логарифмическая мера отношения полной мощности сигнала Р с к полной мощности помех Р п в той же точке цепи:

А з =10lg(Р с / Р п). (3.23)

Значение защищенности однозначно связано со значением переход­ного затухания. В случае одинаковых уровней передачи по влияю­щей и подверженной влиянию цепям эта связь определяется выраже­нием

А з =А-al, (3.24)

где А - переходное затухание на ближнем или дальнем конце цепи;

al - затухание цепи.

Значение защищенности нормируется для конкретных цепей. Поскольку допустимое значение шумов в каналах связи эталонной линии длиной 2500 км не должно превышает 1,1 мВ, то величина защищенности в случае кабельной линии должна быть не менее 54,7 дБ, а воздушной 50,4 дБ.



При строительстве линии связи для контроля за качеством работ требуется знать нормы, отнесенные к одному усилительному участ­ку или длине магистрали, отличной от эталонной длины или другой длины, для которой известно нормируемое значение защищенности.

Когда на линии имеются несколько усилительных участков, то токи помех, наводимые в пределах отдельных усилительных участ­ков, усиливаются промежуточными усилителями, и защищенность на один усилительный участок надо увеличивать. Фазы токов влияния с отдельных участков неизвестны, поэтому применяют квадра­тичный закон сложения. При одинаковых цепях и одинаковых то­ках влияния на каждом усилительном участке полный ток влияния с N усилительных участков будет равен произведению на .

Защищенность по длине всей цепи

Следовательно, защищенность на одном усилительном участке

(3.26)

Значение защищенности, известное для одной длины линии, мо­жет быть пересчитано на другую по формуле

(3.27)

где А з - нормированная защищенность;

l x ; l - длины участков, на которых соответственно определяется и нормируется защищенность.

Нормы переходного затухания устанавливают на основании норм защищенности и принятой схемы организации связи

Косвенные влияния. При выводе формул, для определения токов влияния и переход­ного затухания предполагалось, что на линии имеются только две одинаковые цепи с параллельными проводами (жилами), согласо­ванными нагрузками и электромагнитными связями, постоян­ными по всей длине цепей. В действительности всегда имеют место влияния через третьи цепи из-за несогласованности нагрузок и ли­нии, а также конструктивных неоднородностей. Эти влияния принято на­зывать косвенными (дополнительными). Токи этих влияний, склады­ваясь с токами непосредственного влияния, снижают переходное затухание между цепями и защищенность цепей от взаимных влияний. Исследованиями установлено, что косвенные влияния особен­но сказываются на дальнем конце цепей в области высоких частот и при определенных условиях могут превышать непосредственное влияние между цепями.

Влияния вследствие отражений . Такие влияния возникают в результате неполного согласования входного сопротивления аппаратуры с волновым сопротивлением цепи. На рис. 3.13. показаны две цепи, из которых одна влияющая, другая подверженная влиянию, и пути токов влияния. Оба тока переходят с одной цепи на другую по закону ближнего конца. Токи непосредственного влияния на дальний конец цепи на рис. 3.13 не показаны. Из рис. 3.13 можно видеть, что токи влияния на дальнем конце из-за явления отражений будут тем меньше, чем лучше согласовано входное сопротивление аппаратуры с волновым сопротивлением цепей и чем больше переходное затухание на ближний конец. Следовательно, защищенность на дальнем конце зависит от переходного затухания на ближнем конце А 0 и согласованности входного сопротивления аппаратуры с волновым сопротивлением цепи. По этой при­чине оба эти параметра нормируют.

Влияние из-за конструктивных неоднородностей . В кабельных линиях конструктивные неоднородности обусловлены допусками на параметры полуфабрикатов, используемых для изготовления кабеля (жилы, изоляция жил), допусками в процессе производства кабелей, при скрутке в группы и в общий сердечник кабеля, а также при наложении оболочек. На воздушных линиях причинами конструктивных неоднородностей являются неодинаковые длины стрел провеса проводов, различные расстояния между штырями на траверсах и крюками на опорах. Это приводит к тому, что волновое сопротивление цепей изменяется по длине, в результате чего линия становится неоднородной. В местах изменения волнового сопротивления возникают отраженные волны, которые приводят к появлению суммарной волны, вызванной всеми точками отражений по длине цепи, движущейся к ее началу (встречный поток) и суммарной отраженной волны, движущейся к концу цепи (попутный поток). Эти потоки являются дополнительными источниками влияний на соседние цепи. Конструктивные неоднородности увеличивают поперечную и продольную асимметрии, а следовательно, и влияние между цепями.

Распределение конструктивных неоднородностей вдоль линии носит случайный характер, что значительно ухудшает эффективность скрещивания (скрутки), поэтому их строго нормируют. Чем выше передаваемый спектр частот, тем меньше величина допуска, так как влияние из-за конструктивных неоднородностей возрастает с ростом частоты передаваемого по цепям тока. На воздушных линиях связи расстояние между штырями траверс не должно отклоняться от установленного более чем на 1,5 см, откло­нение длины элемента скрещивания при средней длине его 100 м не должно быть более ± 10 м, асимметрия сопротивления проводов цепи ВЛС постоянному току (на длине усилительного участка) должна быть не более 5 Ом для цепей с проводами из цветных металлов и не более 10 Ом для цепей из стальных проводов диаметром 4 и 5 мм.

Конструктивные элементы симметричных высокочастотных кабелей изготавливаются с жесткими допусками: диаметр медной жилы 1,2 мм ± 100 мкм; максимальная разность диаметров жил в паре 50 мкм; диаметр полистирольного корделя 0,8 мм ± 30 мкм, толщина полистирольной пленки 0,045 мм ± 11 мкм.

Омическая асимметрия цепей кабельных линий городских телефонных сетей постоянному току не должна превышать 1 %. от сопротивления шлейфа измеряемой цепи, а цепей симметричных высокочастотных кабелей типа МКС - , где - длина усилительного участка, км; d – диаметр жилы, мм.

По кабелям типа МКС могут работать как аналоговые так и цифровые системы передачи. Однако производство кабелей типа МКС технологически сложно и они обладают сравнительно низкой электрической прочностью.

Трехслойная пленко-пористая полиэтиленовая изоляция отличается высокой геометрической и диэлектрической однородностью за счет автоматического регулирования диаметра изолированной жилы, погонной емкости и эксцентриситета. Это позволяет обеспечить выполнение основных электрических характеристик кабелей с пленко-пористой полиэтиленовой изоляцией в соответствии с ГОСТ 15125-92 «Кабели связи симметричные высокочастотные с кордельно-полистирольной изоляцией».



error: Контент защищен !!